Menu Close

let-f-x-1-x-2-2cos-x-1-find-f-n-




Question Number 30595 by abdo imad last updated on 23/Feb/18
let f(x)= (1/(x^2  −2cosαx+1))  find f^((n)) .
letf(x)=1x22cosαx+1findf(n).
Commented by abdo imad last updated on 24/Feb/18
roots of p(x)=x^2  −2cosα x +1=0  Δ^, =(−cosα)^2 −1=−sin^2 α=(isinα)^2  ⇒  z_1 =cosα +isinα =e^(iα)   and z_2 =cosα −isinα =e^(−iα) ⇒  f(x)=  (1/((x−e^(iα) )(x−e^(−iα) )))= (a/(x−e^(iα) ))  + (b/(x−e^(−iα) ))  a=lim_(x→e^(iα) )   (x−e^(iα) )f(x)= (1/(2isin(α)))  b=lim_(x→e^(−iα) )  (x−e^(−iα) )f(x)=((−1)/(2i sinα)) ⇒  f(x)= (1/(2isinα))(  (1/(x−e^(iα) )) − (1/(x−e^(−iα) )))⇒  f^((n)) (x)= (1/(2isinα))( ((1/(x−e^(iα) )))^((n))  −((1/(x−e^(−iα) )) )^((n)) )  f^((n)) (x)= (1/(2isinα))(  (((−1)^n  n!)/((x−e^(iα) )^(n+1) )) −(((−1)^n n!)/((x−e^(−iα) )^(n+1) )))  =(((−1)^n n!)/(2isinα))(  (((x−e^(−iα) )^(n+1)  −(x −e^(iα) )^(n+1) )/((x^2  −2cosαx +1)^2 ))) for α≠kπ  if α=kπ f(x)= (1/((x−1)^2 )) or f(x)=(1/((x+1)^2 )) let find f^((n))   in case f(x)= (1/((x+1)^2 ))we have f^((1)) (x)=((−2(x+1))/((x+1)^4 ))=((−2)/((x+1)^3 ))  f^((2)) (x) =((3×2(x+1)^2 )/((x+1)^6 ))=((3×2)/((x+1)^4 )) let suppose  f^((n)) (x)= (((n+1)!(−1)^n )/((x+1)^(n+2) )) ⇒f^((n+1)) (x)=(((−1)^(n+1) (n+1)!(n+2)(x+1)^(n+1) )/((x+1)^(2n+4) ))  =(((−1)^(n+1) (n+2)!)/((x+1)^(n+3) )) ⇒ f^((n)) (x)=(((−1)^n (n+1)!)/((x+1)^(n+2) )) .
rootsofp(x)=x22cosαx+1=0Δ,=(cosα)21=sin2α=(isinα)2z1=cosα+isinα=eiαandz2=cosαisinα=eiαf(x)=1(xeiα)(xeiα)=axeiα+bxeiαa=limxeiα(xeiα)f(x)=12isin(α)b=limxeiα(xeiα)f(x)=12isinαf(x)=12isinα(1xeiα1xeiα)f(n)(x)=12isinα((1xeiα)(n)(1xeiα)(n))f(n)(x)=12isinα((1)nn!(xeiα)n+1(1)nn!(xeiα)n+1)=(1)nn!2isinα((xeiα)n+1(xeiα)n+1(x22cosαx+1)2)forαkπifα=kπf(x)=1(x1)2orf(x)=1(x+1)2letfindf(n)incasef(x)=1(x+1)2wehavef(1)(x)=2(x+1)(x+1)4=2(x+1)3f(2)(x)=3×2(x+1)2(x+1)6=3×2(x+1)4letsupposef(n)(x)=(n+1)!(1)n(x+1)n+2f(n+1)(x)=(1)n+1(n+1)!(n+2)(x+1)n+1(x+1)2n+4=(1)n+1(n+2)!(x+1)n+3f(n)(x)=(1)n(n+1)!(x+1)n+2.

Leave a Reply

Your email address will not be published. Required fields are marked *