let-f-x-1-x-2-2cos-x-1-find-f-n- Tinku Tara June 4, 2023 Differentiation 0 Comments FacebookTweetPin Question Number 30595 by abdo imad last updated on 23/Feb/18 letf(x)=1x2−2cosαx+1findf(n). Commented by abdo imad last updated on 24/Feb/18 rootsofp(x)=x2−2cosαx+1=0Δ,=(−cosα)2−1=−sin2α=(isinα)2⇒z1=cosα+isinα=eiαandz2=cosα−isinα=e−iα⇒f(x)=1(x−eiα)(x−e−iα)=ax−eiα+bx−e−iαa=limx→eiα(x−eiα)f(x)=12isin(α)b=limx→e−iα(x−e−iα)f(x)=−12isinα⇒f(x)=12isinα(1x−eiα−1x−e−iα)⇒f(n)(x)=12isinα((1x−eiα)(n)−(1x−e−iα)(n))f(n)(x)=12isinα((−1)nn!(x−eiα)n+1−(−1)nn!(x−e−iα)n+1)=(−1)nn!2isinα((x−e−iα)n+1−(x−eiα)n+1(x2−2cosαx+1)2)forα≠kπifα=kπf(x)=1(x−1)2orf(x)=1(x+1)2letfindf(n)incasef(x)=1(x+1)2wehavef(1)(x)=−2(x+1)(x+1)4=−2(x+1)3f(2)(x)=3×2(x+1)2(x+1)6=3×2(x+1)4letsupposef(n)(x)=(n+1)!(−1)n(x+1)n+2⇒f(n+1)(x)=(−1)n+1(n+1)!(n+2)(x+1)n+1(x+1)2n+4=(−1)n+1(n+2)!(x+1)n+3⇒f(n)(x)=(−1)n(n+1)!(x+1)n+2. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: x-4-2-1-3-4-x-3-2-1-3-5-x-2-x-12-1-3-0-Next Next post: nature-de-o-1-1-t-2-1-t-dt- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.