Menu Close

let-f-x-1-x-2-x-1-find-the-domain-and-f-1-2-if-exist-ceiling-function-




Question Number 86894 by M±th+et£s last updated on 01/Apr/20
let f(x)=((1−x^2 )/(⌈x−1⌉))  find the domain and f ′(−(1/2)) if exist.    ⌈...⌉ ceiling function
letf(x)=1x2x1findthedomainandf(12)ifexist.ceilingfunction
Commented by mathmax by abdo last updated on 01/Apr/20
if [..] mean integr part  we have f(x) =((1−x^2 )/([x]−1))  let [x]=p ⇒p≤x<p+1 ⇒f(x)=((1−x^2 )/(p−1))  and for p≠1 we get  f^′ (x) =(1/(p−1))(−2x) =((−2x)/(p−1))  x=−(1/2) ⇒[−(1/2)]=−1 ⇒f^′ (−(1/2)) =(((−2)×(−(1/2)))/(−2)) =−(1/2)  domain of f  [x]−1=0 ⇔[x]=1 ⇒1≤x<2 ⇒D_f =R−[1,2[
if[..]meanintegrpartwehavef(x)=1x2[x]1let[x]=ppx<p+1f(x)=1x2p1andforp1wegetf(x)=1p1(2x)=2xp1x=12[12]=1f(12)=(2)×(12)2=12domainoff[x]1=0[x]=11x<2Df=R[1,2[
Commented by M±th+et£s last updated on 01/Apr/20
⌈...⌉ smallest integer function
smallestintegerfunction

Leave a Reply

Your email address will not be published. Required fields are marked *