Menu Close

let-f-x-1-x-e-t-1-e-t-dt-with-x-lt-0-1-calculate-f-x-2-find-1-0-e-t-1-e-t-dt-




Question Number 40152 by maxmathsup by imad last updated on 16/Jul/18
let  f(x) =  ∫_(−1) ^x     (e^t /( (√(1−e^t ))))dt   with x<0  1) calculate f(x)  2) find  ∫_(−1) ^0   (e^t /( (√(1−e^t ))))dt
$${let}\:\:{f}\left({x}\right)\:=\:\:\int_{−\mathrm{1}} ^{{x}} \:\:\:\:\frac{{e}^{{t}} }{\:\sqrt{\mathrm{1}−{e}^{{t}} }}{dt}\:\:\:{with}\:{x}<\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:\:\int_{−\mathrm{1}} ^{\mathrm{0}} \:\:\frac{{e}^{{t}} }{\:\sqrt{\mathrm{1}−{e}^{{t}} }}{dt} \\ $$
Commented by maxmathsup by imad last updated on 16/Jul/18
changement e^t   =u give  t=ln(u) ⇒  f(x)= ∫_e^(−1)  ^e^x       (u/( (√(1−u)))) (du/u) = ∫_e^(−1)  ^e^x      (du/( (√(1−u)))) =[−2(√(1−u))]_e^(−1)  ^e^x    f(x)=−2{(√(1−e^x  ))  −(√(1−e^(−1) ))}  2) ∫_(−1) ^0    (e^t /( (√(1−e^t )))) dt =lim_(x→0)    f(x)= 2(√(1−e^(−1) ))
$${changement}\:{e}^{{t}} \:\:={u}\:{give}\:\:{t}={ln}\left({u}\right)\:\Rightarrow \\ $$$${f}\left({x}\right)=\:\int_{{e}^{−\mathrm{1}} } ^{{e}^{{x}} } \:\:\:\:\:\frac{{u}}{\:\sqrt{\mathrm{1}−{u}}}\:\frac{{du}}{{u}}\:=\:\int_{{e}^{−\mathrm{1}} } ^{{e}^{{x}} } \:\:\:\:\frac{{du}}{\:\sqrt{\mathrm{1}−{u}}}\:=\left[−\mathrm{2}\sqrt{\mathrm{1}−{u}}\right]_{{e}^{−\mathrm{1}} } ^{{e}^{{x}} } \\ $$$${f}\left({x}\right)=−\mathrm{2}\left\{\sqrt{\mathrm{1}−{e}^{{x}} \:}\:\:−\sqrt{\mathrm{1}−{e}^{−\mathrm{1}} }\right\} \\ $$$$\left.\mathrm{2}\right)\:\int_{−\mathrm{1}} ^{\mathrm{0}} \:\:\:\frac{{e}^{{t}} }{\:\sqrt{\mathrm{1}−{e}^{{t}} }}\:{dt}\:={lim}_{{x}\rightarrow\mathrm{0}} \:\:\:{f}\left({x}\right)=\:\mathrm{2}\sqrt{\mathrm{1}−{e}^{−\mathrm{1}} } \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 16/Jul/18
∫_(−1) ^x (e^t /( (√(1−e^t ))))dt  =−1∫_(−1) ^x ((d(1−e^t ))/( (√(1−e^t ))))  =−1×∣((√(1−e^t ))/(1/2))∣_(−1) ^x   =−2{(√(1−e^x  ))  −(√(1−e^(−1) ))  }  ∫_(−1) ^0 (e^t /( (√(1−e^t )) ))dt  =−2{(√(1−e^0 ))  −(√(1−e_ ^(−1) }))  =2(√(1−e^(−1) )) }
$$\int_{−\mathrm{1}} ^{{x}} \frac{{e}^{{t}} }{\:\sqrt{\mathrm{1}−{e}^{{t}} }}{dt} \\ $$$$=−\mathrm{1}\int_{−\mathrm{1}} ^{{x}} \frac{{d}\left(\mathrm{1}−{e}^{{t}} \right)}{\:\sqrt{\mathrm{1}−{e}^{{t}} }} \\ $$$$=−\mathrm{1}×\mid\frac{\sqrt{\mathrm{1}−{e}^{{t}} }}{\frac{\mathrm{1}}{\mathrm{2}}}\mid_{−\mathrm{1}} ^{{x}} \\ $$$$=−\mathrm{2}\left\{\sqrt{\mathrm{1}−{e}^{{x}} \:}\:\:−\sqrt{\mathrm{1}−{e}^{−\mathrm{1}} }\:\:\right\} \\ $$$$\int_{−\mathrm{1}} ^{\mathrm{0}} \frac{{e}^{{t}} }{\:\sqrt{\mathrm{1}−{e}^{{t}} }\:}{dt} \\ $$$$=−\mathrm{2}\left\{\sqrt{\mathrm{1}−{e}^{\mathrm{0}} }\:\:−\sqrt{\left.\mathrm{1}−{e}_{} ^{−\mathrm{1}} \right\}}\right. \\ $$$$\left.=\mathrm{2}\sqrt{\mathrm{1}−{e}^{−\mathrm{1}} }\:\right\} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *