Menu Close

let-f-x-1-x-e-t-1-e-t-dt-with-x-lt-0-1-calculate-f-x-2-find-1-0-e-t-1-e-t-dt-




Question Number 40152 by maxmathsup by imad last updated on 16/Jul/18
let  f(x) =  ∫_(−1) ^x     (e^t /( (√(1−e^t ))))dt   with x<0  1) calculate f(x)  2) find  ∫_(−1) ^0   (e^t /( (√(1−e^t ))))dt
letf(x)=1xet1etdtwithx<01)calculatef(x)2)find10et1etdt
Commented by maxmathsup by imad last updated on 16/Jul/18
changement e^t   =u give  t=ln(u) ⇒  f(x)= ∫_e^(−1)  ^e^x       (u/( (√(1−u)))) (du/u) = ∫_e^(−1)  ^e^x      (du/( (√(1−u)))) =[−2(√(1−u))]_e^(−1)  ^e^x    f(x)=−2{(√(1−e^x  ))  −(√(1−e^(−1) ))}  2) ∫_(−1) ^0    (e^t /( (√(1−e^t )))) dt =lim_(x→0)    f(x)= 2(√(1−e^(−1) ))
changementet=ugivet=ln(u)f(x)=e1exu1uduu=e1exdu1u=[21u]e1exf(x)=2{1ex1e1}2)10et1etdt=limx0f(x)=21e1
Answered by tanmay.chaudhury50@gmail.com last updated on 16/Jul/18
∫_(−1) ^x (e^t /( (√(1−e^t ))))dt  =−1∫_(−1) ^x ((d(1−e^t ))/( (√(1−e^t ))))  =−1×∣((√(1−e^t ))/(1/2))∣_(−1) ^x   =−2{(√(1−e^x  ))  −(√(1−e^(−1) ))  }  ∫_(−1) ^0 (e^t /( (√(1−e^t )) ))dt  =−2{(√(1−e^0 ))  −(√(1−e_ ^(−1) }))  =2(√(1−e^(−1) )) }
1xet1etdt=11xd(1et)1et=1×1et121x=2{1ex1e1}10et1etdt=2{1e01e1}=21e1}

Leave a Reply

Your email address will not be published. Required fields are marked *