Menu Close

let-f-x-1-x-ln-1-2x-1-calculate-f-n-x-and-f-n-1-2-developp-f-at-integr-serie-at-x-0-1-3-developp-f-at-integr-serie-at-x-0-0-




Question Number 95786 by abdomathmax last updated on 27/May/20
let f(x) =(1/x)ln(1+2x)  1) calculate f^((n)) (x)and f^((n)) (1)  2)developp f at integr serie at x_0 =1  3)developp f at integr serie  at x_0 =0
letf(x)=1xln(1+2x)1)calculatef(n)(x)andf(n)(1)2)developpfatintegrserieatx0=13)developpfatintegrserieatx0=0
Commented by Rio Michael last updated on 28/May/20
sir when you talk about integer series  do you mean taylors series?
sirwhenyoutalkaboutintegerseriesdoyoumeantaylorsseries?
Commented by mathmax by abdo last updated on 29/May/20
yes
yes
Answered by mathmax by abdo last updated on 02/Jun/20
1) f^((n)) (x) =Σ_(k=0) ^n  C_n ^k  (ln(2x+1))^((k)) ((1/x))^((n−k))   =C_n ^0  ln(2x+1)(((−1)^n  n!)/x^(n+1) ) +Σ_(k=1) ^n  C_n ^k  (ln(2x+1))^((k)) ×(((−1)^(n−k) (n−k)!)/x^(n−k+1) )  we have (d/dx)ln(2x+1) =(2/(2x+1)) =(1/(x+(1/2))) ⇒(d^k /dx^k )ln(2x+1)=((1/(x+(1/2))))^((k−1))   =(((−1)^(k−1) (k−1)!)/((x+(1/2))^k )) ⇒  f^((n)) (x) =(((−1)^n n!)/x^(n+1) )ln(2x+1) +Σ_(k=1) ^n  C_n ^k  (((−1)^(k−1) (k−1)!)/((x+(1/2))^k ))×(((−1)^(n−k) (n−k)!)/x^(n−k+1) )  =(((−1)^n n!)/x^(n+1) )ln(2x+1) +Σ_(k=1) ^n  (−1)^(n−1)  ((n!)/(k!(n−k)!))×(((k−1)!(n−k)!)/(x^(n−k+1) (x+(1/2))^k ))  f^((n)) (x)=(((−1)^n n!)/x^(n+1) )ln(2x+1) +n!(−1)^(n−1)  Σ_(k=1) ^n   (1/(k x^(n−k+1) (x+(1/2))^k ))
1)f(n)(x)=k=0nCnk(ln(2x+1))(k)(1x)(nk)=Cn0ln(2x+1)(1)nn!xn+1+k=1nCnk(ln(2x+1))(k)×(1)nk(nk)!xnk+1wehaveddxln(2x+1)=22x+1=1x+12dkdxkln(2x+1)=(1x+12)(k1)=(1)k1(k1)!(x+12)kf(n)(x)=(1)nn!xn+1ln(2x+1)+k=1nCnk(1)k1(k1)!(x+12)k×(1)nk(nk)!xnk+1=(1)nn!xn+1ln(2x+1)+k=1n(1)n1n!k!(nk)!×(k1)!(nk)!xnk+1(x+12)kf(n)(x)=(1)nn!xn+1ln(2x+1)+n!(1)n1k=1n1kxnk+1(x+12)k
Commented by mathmax by abdo last updated on 02/Jun/20
f^((n)) (1) =n!(−1)^n ln(3) +n!(−1)^(n−1)  Σ_(k=1) ^n  (1/(k((3/2))^k ))  =n!(−1)^n ln(3) +n!(−1)^(n−1)  Σ_(k=1) ^n  (1/k)((2/3))^k
f(n)(1)=n!(1)nln(3)+n!(1)n1k=1n1k(32)k=n!(1)nln(3)+n!(1)n1k=1n1k(23)k

Leave a Reply

Your email address will not be published. Required fields are marked *