Menu Close

let-f-x-2-1-x-2-dx-with-0-lt-lt-1-1-determine-a-explicit-form-of-f-2-calculate-lim-1-f-3-calculate-0-1-2-x-2-1-sin-2-x-2-dx-with-0-lt-lt-pi-2-




Question Number 62342 by maxmathsup by imad last updated on 20/Jun/19
let f(ξ) =∫  (x^2 /( (√(1−ξx^2 ))))dx   with  0<ξ<1  1) determine a explicit form of f(ξ)  2) calculate lim_(ξ→1)    f(ξ)  3) calculate ∫_0 ^(1/2)  (x^2 /( (√(1−sin^2 θ x^2 )))) dx with  0<θ<(π/2)
letf(ξ)=x21ξx2dxwith0<ξ<11)determineaexplicitformoff(ξ)2)calculatelimξ1f(ξ)3)calculate012x21sin2θx2dxwith0<θ<π2
Commented by prof Abdo imad last updated on 20/Jun/19
1) f(ξ)=(1/ξ) ∫ ((((√ξ)x)^2 )/( (√(1−((√ξ)x)^2 )))) dx   =_((√ξ)x=t)     (1/ξ) ∫ (t^2 /( (√(1−t^2 )))) (dt/( (√ξ))) =(1/(ξ(√ξ))) ∫  (t^2 /( (√(1−t^2 )))) dt  ∫ (t^2 /( (√(1−t^2 )))) dt =−∫ ((1−t^2 −1)/( (√(1−t^2 ))))dt   =−∫ (√(1−t^2 ))dt +∫  (dt/( (√(1−t^2 )))) +c  ∫   (dt/( (√(1−t^2 )))) dt =arcsint   ∫ (√(1−t^2 ))dt =_(t=sinu)    ∫ cos^2 udu  =∫ ((1+cos(2u))/2) du =(u/2) +(1/4)sin(2u)  =(u/2) +(1/2)sinu cosu =(u/2) +(1/2)sinu(√(1−sin^2 u))  =((arcsint)/2) +(t/2)(√(1−t^2 )) ⇒  f(ξ) =(1/(ξ(√ξ)))(−((arcsint)/2) +(1/2)t(√(1−t^2 ))  +arcsint} +c  f(ξ)=(1/(ξ(√ξ))){((arcsint)/2) +((t(√(1−t^2 )))/2)} +c
1)f(ξ)=1ξ(ξx)21(ξx)2dx=ξx=t1ξt21t2dtξ=1ξξt21t2dtt21t2dt=1t211t2dt=1t2dt+dt1t2+cdt1t2dt=arcsint1t2dt=t=sinucos2udu=1+cos(2u)2du=u2+14sin(2u)=u2+12sinucosu=u2+12sinu1sin2u=arcsint2+t21t2f(ξ)=1ξξ(arcsint2+12t1t2+arcsint}+cf(ξ)=1ξξ{arcsint2+t1t22}+c
Commented by prof Abdo imad last updated on 20/Jun/19
t =x(√ξ) ⇒  f(ξ) =(1/(2ξ(√ξ))){ arcsin(x(√ξ))+x(√ξ)(√(1−ξx^2 ))} +c
t=xξf(ξ)=12ξξ{arcsin(xξ)+xξ1ξx2}+c
Commented by prof Abdo imad last updated on 20/Jun/19
2) lim_(ξ→1)    f(ξ) =(1/2)( arcsin(x)+x(√(1−x^2 ))) +c
2)limξ1f(ξ)=12(arcsin(x)+x1x2)+c
Commented by prof Abdo imad last updated on 20/Jun/19
3) ∫_0 ^(1/2)  (x^2 /( (√(1−sin^2 θ x^2 ))))dx          (ξ=sin^2 θ)  =[(1/(2sin^3 θ)){arcsin(xsinθ) +xsinθ(√(1−sin^2 θ x^2 ))}]_0 ^(1/2)   =(1/(2sin^3 θ)){ arcsin(((sinθ)/2))+(1/2)sinθ(√(1−(1/4)sin^2 θ))}
3)012x21sin2θx2dx(ξ=sin2θ)=[12sin3θ{arcsin(xsinθ)+xsinθ1sin2θx2}]012=12sin3θ{arcsin(sinθ2)+12sinθ114sin2θ}
Answered by mr W last updated on 20/Jun/19
f(ξ) =∫  (x^2 /( (√(1−ξx^2 ))))dx  =(1/ξ)∫  ((((√ξ)x)^2 )/( (√(1−((√ξ)x)^2 ))))d((√ξ)x)  =(1/ξ)∫  (t^2 /( (√(1−t^2 ))))dt  =(1/ξ)∫[  (1/( (√(1−t^2 ))))−(√(1−t^2 ))]dt  =....  =(1/(2ξ))[(1/( (√ξ))) sin^(−1) ((√ξ)x)−x(√(1−ξx^2 ))]+C
f(ξ)=x21ξx2dx=1ξ(ξx)21(ξx)2d(ξx)=1ξt21t2dt=1ξ[11t21t2]dt=.=12ξ[1ξsin1(ξx)x1ξx2]+C

Leave a Reply

Your email address will not be published. Required fields are marked *