Menu Close

let-f-x-2-x-1-2x-1-find-D-f-2-study-the-variation-of-f-x-3-calculate-1-3-f-x-dx-4-determine-f-1-x-and-calculate-1-3-f-1-x-dx-5-find-the-values-of-A-1-3-f




Question Number 42631 by maxmathsup by imad last updated on 29/Aug/18
let f(x)=2(√(x−1)) −2x  1) find D_f   2) study the variation of f(x)  3 ) calculate  ∫_1 ^3  f(x)dx  4) determine f^(−1) (x) and calculate   ∫_1 ^3  f^(−1) (x)dx  5)  find the values of  A =  ∫_1 ^3    ((f(x))/(f^(−1) (x)dx)) and   B = ((∫_1 ^3   f(x))/(∫_1 ^3  f^(−1) (x))) dx.
letf(x)=2x12x1)findDf2)studythevariationoff(x)3)calculate13f(x)dx4)determinef1(x)andcalculate13f1(x)dx5)findthevaluesofA=13f(x)f1(x)dxandB=13f(x)13f1(x)dx.
Commented by bbnnftm833 last updated on 30/Aug/18
we need the solution
weneedthesolution
Commented by maxmathsup by imad last updated on 31/Aug/18
1) x∈ D_f  ⇔ x−1≥0 ⇒D_f =[1,+∞[  2)lim_(x→+∞)  f(x)  =lim_(x→+∞)  2x( (√((x−1)/x^2 )) −1)=lim_(x→+∞) 2x((√((1/x)−(1/x^2 )))−1)  =lim_(x→+∞)  −2x =−∞  we have f^′ (x)= (1/( (√(x−1)))) −2 for x>1 ⇒f^′ (x)=((1−2(√(x−1)))/( (√(x−1))))  f^′ (x)=0 ⇔ 2(√(x−1))=1 ⇔(√(x−1))=(1/2) ⇔x−1=(1/4) ⇔x =(5/4)  f^′ (x)>0 ⇔ 1−2(√(x−1))>0 ⇔2(√(x−1))<1 ⇔ 1<x<(5/4)  f^′ (x)<0 ⇔ x>(5/4)  x_            1                 (5/4)            +∞  f^′ (x)              +                 −  f(x)    −2     inc  −(3/2)               decr                                        f(1)=−2     f((5/4))=2(√((5/4)−1))−2(5/4)  =1−(5/2) =−(3/2)
1)xDfx10Df=[1,+[2)limx+f(x)=limx+2x(x1x21)=limx+2x(1x1x21)=limx+2x=wehavef(x)=1x12forx>1f(x)=12x1x1f(x)=02x1=1x1=12x1=14x=54f(x)>012x1>02x1<11<x<54f(x)<0x>54x154+f(x)+f(x)2inc32decrf(1)=2f(54)=2541254=152=32
Commented by maxmathsup by imad last updated on 31/Aug/18
3) ∫_1 ^3  f(x)dx = ∫_1 ^3  {2(√(x−1))−2x}dx = 2 [(2/3)(x−1)^(3/2) ]_1 ^3 −  [x^2 ]_1 ^3   =(4/3){ 2^(3/2) } −(9−1) = (4/3)(√2^3 )  −8  =(4/3)(2(√2)) −8 =((8(√2))/3) −8 .
3)13f(x)dx=13{2x12x}dx=2[23(x1)32]13[x2]13=43{232}(91)=43238=43(22)8=8238.
Commented by maxmathsup by imad last updated on 31/Aug/18
4)  f(x)=y ⇔ x =f^(−1) (y)   and f(x)=y ⇒2(√(x−1))−2x=y   (x≥1) ⇒  2(√(x−1)) =2x+y ⇒ 4(x−1) =(2x+y)^2  ⇒4x−4 =4x^2  +4xy +y^2  ⇒  4x^2  +4xy +y^2  −4x+4 =0 ⇒ 4x^2  +4(y−1)x +y^2  +4 =0  Δ^′  =4(y−1)^2  −4(y^2  +4) =4y^2  −8y +4 −4y^2  −16 =−8y −12   this equation have solution ⇔−8y−12≥0 ⇔8y +12≤0 ⇔y ≤((−12)/8)(=−(3/2))  x_1 =((−2(y−1)+(√(−8y−12)))/4) =((−(y−1) +(√(−2y−3)))/2)  x_2 =((−(y−1)−(√(−2y−3)))/2)   x_1 −1 =((1−y +(√(−2y−3)))/2) −1 =((−1−y +(√(−2y −3)))/2)  but  y≤−(3/2) ⇒−y≥(3/2) ⇒−1−y ≥(1/2) ≥0 ⇒x_1 −1≥0  no need to verify x_2   ⇒f^(−1) (y) =((1−y +(√(−2y−3)))/2)  ⇒f^(−1) (x) =((1−x+(√(−2x−3)))/2)  with x≤−(3/2) .
4)f(x)=yx=f1(y)andf(x)=y2x12x=y(x1)2x1=2x+y4(x1)=(2x+y)24x4=4x2+4xy+y24x2+4xy+y24x+4=04x2+4(y1)x+y2+4=0Δ=4(y1)24(y2+4)=4y28y+44y216=8y12thisequationhavesolution8y1208y+120y128(=32)x1=2(y1)+8y124=(y1)+2y32x2=(y1)2y32x11=1y+2y321=1y+2y32buty32y321y120x110noneedtoverifyx2f1(y)=1y+2y32f1(x)=1x+2x32withx32.
Commented by maxmathsup by imad last updated on 31/Aug/18
4) forgive  the Q is calculate ∫_(−3) ^(−2)  f^(−1) (x)dx  5) the Q is find the value of  A = ((∫_2 ^3  f(x)dx)/(∫_(−3) ^(−2)  f^(−1) (x)dx))  B =  ∫     ((f(x))/(f^(−1) (x)))dx .
4)forgivetheQiscalculate32f1(x)dx5)theQisfindthevalueofA=23f(x)dx32f1(x)dxB=f(x)f1(x)dx.
Commented by maxmathsup by imad last updated on 31/Aug/18
4) we have f^(−1) (x)=((1−x+(√(−2x−3)))/2) ⇒  ∫_(−3) ^(−2)   f^(−1) (x)dx =(1/2) ∫_(−3) ^(−2) (1−x) +(1/2) ∫_(−3) ^(−2)  (√(−2x−3))dx  but    ∫_(−3) ^(−2) (1−x)dx =[x−(x^2 /2)]_(−3) ^(−2)   =−2−2−(−3−(9/2))=−1 +(9/2) =(7/2)   and  ∫_(−3) ^(−2)  (√(−2x−3))dx =[−(1/3)(−2x−3)^(3/2) ]_(−3) ^(−2)  =−(1/3){1−(3)^(3/2) }  =(√3) −(1/3) ⇒∫_(−3) ^(−2)  f^(−1) (x)dx = (7/4)  +((√3)/2) −(1/6) =((38)/(24)) +((√3)/2) =((19)/(12)) +((√3)/2)
4)wehavef1(x)=1x+2x3232f1(x)dx=1232(1x)+12322x3dxbut32(1x)dx=[xx22]32=22(392)=1+92=72and322x3dx=[13(2x3)32]32=13{1(3)32}=31332f1(x)dx=74+3216=3824+32=1912+32
Commented by maxmathsup by imad last updated on 31/Aug/18
5) we have  ∫_2 ^3  f(x)dx = 2 ∫_2 ^3  (√(x−1)) −∫_2 ^3  2x dx   =2[(2/3)(x−1)^(3/2) ]_2 ^3  −[x^2 ]_2 ^3    =(4/3){ 2^(3/2)  −1}−{9−4}  =(4/3)(2(√2)) −5 =((8(√2))/3) −5  also we have  ∫_(−3) ^(−2)   f^(−1) (x)dx =((19)/(12)) +((√3)/2) ⇒  A = ((∫_2 ^3  f(x)dx)/(∫_(−3) ^(−2)  f^(−1) (x)dx)) = ((((8(√2))/3)−5)/(((19)/(12)) +((√3)/2))) .
5)wehave23f(x)dx=223x1232xdx=2[23(x1)32]23[x2]23=43{2321}{94}=43(22)5=8235alsowehave32f1(x)dx=1912+32A=23f(x)dx32f1(x)dx=82351912+32.
Answered by behi83417@gmail.com last updated on 30/Aug/18
1)x−1≥0⇒x≥1⇒D_f =[1,+∞)  2)y=2(√(x−1))−2x  y′=(1/( (√(x−1))))−2⇒x≠1⇒D_f =(1,+∞)  x−1=t^2 ⇒x=t^2 +1  f(t)=2t−2(t^2 +1)=−2(t^2 −t+1)  ⇒t^2 −t+1=((−y)/2)⇒(t−(1/2))^2 =((−y)/2)−(3/4)  ⇒t−(1/2)=±(√(−((2y+3)/4)))⇒t=(1/2)(1±(√(−2y−3)))  ⇒(√(x−1))=(1/2)(1±(√(−2y−3)))  ⇒x=1+(1/4)(1±(√(−2y−3)))^2   ⇒f^(−1) (x)=1+(1/4)(1±(√(−2x−3)))^2   −2y−3≥0⇒2y+3≤0⇒y≤−(3/2)  ⇒R_f =(−∞,−(3/2)].  3)∫_1 ^3 f(x)dx=∫_1 ^3 (2(√(x−1))−2x)dx=  =[(4/3)(x−1)^(3/2) −x^2 ]_1 ^3 =8(((√2)/3)−1).  4)∫f^(−1) (x)dx=∫[1+(1/4)(1±(√(−2x−3)))^2 ]dx=  =∫[1+(1/4)(1∓(2x+3)±2(√(−2x−3)))]dx  I_1 =∫[1+(1/4)(2x+4+2(√(−2x−3)))]dx=  =(1/2)(2x+(((x+1)^2 )/2)−(1/3)(−2x−3)^(3/2) )_1 ^3 =  =(1/2)[6+8−27i−2−2+((i(√5))/3)]=  =5−((81−(√5))/6).i
1)x10x1Df=[1,+)2)y=2x12xy=1x12x1Df=(1,+)x1=t2x=t2+1f(t)=2t2(t2+1)=2(t2t+1)t2t+1=y2(t12)2=y234t12=±2y+34t=12(1±2y3)x1=12(1±2y3)x=1+14(1±2y3)2f1(x)=1+14(1±2x3)22y302y+30y32Rf=(,32].3)31f(x)dx=31(2x12x)dx=Missing \left or extra \right4)f1(x)dx=[1+14(1±2x3)2]dx==[1+14(1(2x+3)±22x3)]dxI1=[1+14(2x+4+22x3)]dx=Missing \left or extra \right=12[6+827i22+i53]==58156.i

Leave a Reply

Your email address will not be published. Required fields are marked *