Menu Close

let-f-x-2-x-2-x-1-calculate-lim-x-f-x-and-lim-x-f-x-2-calculate-lim-x-f-x-x-and-lim-x-f-x-x-3-calculate-f-x-and-determine-its-sign-4-give-the-var




Question Number 36442 by abdo mathsup 649 cc last updated on 02/Jun/18
let f(x)= (√(2+x^2  ))   −x  1) calculate lim_(x→+∞) f(x) and lim_(x→−∞) f(x)  2) calculate lim_(x→+∞)  ((f(x))/x) and  lim_(x→−∞)  ((f(x))/x)  3) calculate f^′ (x) and determine its sign  4) give the variation of  5) give the equation of assymptote at  point  A(1,f(1))  6) find f^(−1) (x) and calculate (f^(−1) )^′ (x)  7) calculate  ∫_0 ^4 f(x)dx .
letf(x)=2+x2x1)calculatelimx+f(x)andlimxf(x)2)calculatelimx+f(x)xandlimxf(x)x3)calculatef(x)anddetermineitssign4)givethevariationof5)givetheequationofassymptoteatpointA(1,f(1))6)findf1(x)andcalculate(f1)(x)7)calculate04f(x)dx.
Commented by abdo.msup.com last updated on 05/Jun/18
1) lim_(x→+∞) f(x)=lim_(x→+∞)  (2/( (√(2+x^2 )) +x))  =0 and lim_(x→−∞) f(x)=+∞  2) lim_(x→+∞)  ((f(x))/x) =lim(((√(2+x^2 )) −x)/x)  =lim_(x→+∞)  (√((2/x^2 ) +1))  −1  =0  lim_(x→−∞)  ((f(x))/x) =lim_(x→−∞)  (((√(2+x^2  )) −x)/x)  =lim_(x→−∞)   −(√((2/x^2 ) +1))  −1 =−2  3)we have f(x)=(√(2+x^2 ))  −x ⇒  f^′ (x) = ((2x)/(2(√(2+x^2 )))) −1 = (x/( (√(2+x^2 )))) −1  =((x−(√(2+x^2 )))/( (√(2+x^2 ))))  if x≤0  f^′ (x)≤0   if x≥0  we have x^2  −((√(2+x^2 )))^2 ≤ 0 ⇒  f^′ (x)≤0  4) f is decreasing on R .
1)limx+f(x)=limx+22+x2+x=0andlimxf(x)=+2)limx+f(x)x=lim2+x2xx=limx+2x2+11=0limxf(x)x=limx2+x2xx=limx2x2+11=23)wehavef(x)=2+x2xf(x)=2x22+x21=x2+x21=x2+x22+x2ifx0f(x)0ifx0wehavex2(2+x2)20f(x)04)fisdecreasingonR.
Commented by abdo.msup.com last updated on 05/Jun/18
5) we have  f(x)=(√(2+x^2 )) −x ⇒  f(1)=(√3) −1 also f^′ (x)= (x/( (√(2+x^2 )))) −1 ⇒  f^′ (1) = (1/( (√3))) −1 so the equstion of   assymptote is  y =f^′ (1)(x−1) +f(1)⇒  y =((1/( (√3))) −1)(x−1) +(√3) −1 .
5)wehavef(x)=2+x2xf(1)=31alsof(x)=x2+x21f(1)=131sotheequstionofassymptoteisy=f(1)(x1)+f(1)y=(131)(x1)+31.
Commented by abdo.msup.com last updated on 05/Jun/18
6) f is decreasing so f]−∞,+∞[  =]f(+∞),f(−∞)[=]0,+∞[ f is  a bijection from R to ]0,+∞[  let f(x)=y ⇔ (√(2+x^2 )) −x =y ⇒  (√(2+x^2 )) =x +y  ( so x+y>0)⇒  2+x^2  =x^2  +2xy +y^2  ⇒  2=2xy +y^2  ⇒ 2−y^2  =2xy ⇒x=((2−y^2 )/(2y))  ⇒ f^(−1) (x) = ((2−x^2 )/(2x))  and x>0
6)fisdecreasingsof],+[=]f(+),f()[=]0,+[fisabijectionfromRto]0,+[letf(x)=y2+x2x=y2+x2=x+y(sox+y>0)2+x2=x2+2xy+y22=2xy+y22y2=2xyx=2y22yf1(x)=2x22xandx>0
Commented by abdo.msup.com last updated on 05/Jun/18
we have f^(−1) (x)= (1/x) −(x/2) ⇒  (f^(−1) (x))^′  = −(1/x^2 ) −(1/2) .
wehavef1(x)=1xx2(f1(x))=1x212.
Commented by abdo.msup.com last updated on 05/Jun/18
7) let A= ∫_0 ^4  f(x)dx  A  = ∫_0 ^4  ((√(2+x^2 )) −x)dx  =∫_0 ^4  (√(2+x^2 )) dx  −[(x^2 /2)]_0 ^4   =∫_0 ^4 (√(2+x^2  ))dx −8  but chang.x=(√2) sh(t)  give  ∫_0 ^4  (√(2+x^2 ))dx=(√2) ∫_0 ^(argsh((4/( (√2)))))  ch(t)(√2)chtdt  = 2 ∫_0 ^(argsh((4/( (√2)))))  ch^2 (t)dt =2 ∫_0 ^(argsh((4/( (√2))))) ((1+ch(2t))/2)dt  =argsh((4/( (√2))))  +(1/2)[sh(2t)]_0 ^(argsh((4/( (√2)))))   =ln( (4/( (√2))) +3) +(1/2)sh(2 ln{(4/( (√2))) +3)})  =ln((4/( (√2))) +3) +(1/4){ ((4/( (√2))) +3)^2  +((4/( (√2))) +3)^(−1) } .
7)letA=04f(x)dxA=04(2+x2x)dx=042+x2dx[x22]04=042+x2dx8butchang.x=2sh(t)give042+x2dx=20argsh(42)ch(t)2chtdt=20argsh(42)ch2(t)dt=20argsh(42)1+ch(2t)2dt=argsh(42)+12[sh(2t)]0argsh(42)=ln(42+3)+12sh(2ln{42+3)})=ln(42+3)+14{(42+3)2+(42+3)1}.
Commented by abdo.msup.com last updated on 05/Jun/18
I =ln(4+3(√2)) −(1/2)ln(2)  +(1/4){ ((4/( (√2))) +3)^2  −((4/( (√2))) +3)^(−2) } −8 .
I=ln(4+32)12ln(2)+14{(42+3)2(42+3)2}8.

Leave a Reply

Your email address will not be published. Required fields are marked *