Menu Close

let-f-x-2-x-developp-f-at-integr-serie-and-give-the-radius-of-convergence-




Question Number 34696 by abdo imad last updated on 10/May/18
let f(x) =(√(2−x))  developp f at integr serie and give the radius of  convergence.
letf(x)=2xdeveloppfatintegrserieandgivetheradiusofconvergence.
Commented by math khazana by abdo last updated on 11/May/18
f(x)=(√2) (√(1−(x/2)))  =(√2)(1−(x/2))^(1/2)   but we know that  (1+u)^α   = 1+αu ((α(α−1))/(2!))u^2  +...  =1+Σ_(n=1) ^∞     ((α(α−1)...(α−n+1))/(n!)) u^n      and (1−u)^n  =1+ Σ_(n=1) ^∞   α(α−1)...(α−n+1)(((−1)^n )/(n!)) u^n   (1−(x/2))^(1/2)   = 1 +Σ_(n=1) ^∞   (1/2)((1/2)−1)...((1/2)−n+1)(((−1)^n )/(n!)) (x^n /2^n )  =1 + Σ_(n=1) ^∞    (((−1)^n )/(n! 2^(n+1) ))(−(1/2))...(−(3/2))... (−((2n−3)/2)) x^n   =1+ Σ_(n=1) ^∞    (((−1))/(n! 2^(n+1) )) .((1.3.5.....(2n−3))/2^(n−1) ) x^n   = 1  + Σ_(n=1) ^∞     ((−1)/(n! 2^(2n) )) (1.3.5.....(2n−3))x^n  ⇒  f(x) =(√2)  −(√2) Σ_(n=1) ^∞    ((1.3.5....(2n−3))/(n! 2^(2n) )) x^n   .
f(x)=21x2=2(1x2)12butweknowthat(1+u)α=1+αuα(α1)2!u2+=1+n=1α(α1)(αn+1)n!unand(1u)n=1+n=1α(α1)(αn+1)(1)nn!un(1x2)12=1+n=112(121)(12n+1)(1)nn!xn2n=1+n=1(1)nn!2n+1(12)(32)(2n32)xn=1+n=1(1)n!2n+1.1.3.5..(2n3)2n1xn=1+n=11n!22n(1.3.5..(2n3))xnf(x)=22n=11.3.5.(2n3)n!22nxn.

Leave a Reply

Your email address will not be published. Required fields are marked *