let-f-x-2-x-x-1-find-f-x-f-1-x-dx-and-ln-f-x-f-1-x-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 91620 by abdomathmax last updated on 02/May/20 letf(x)=2x−x−1find∫f(x)f−1(x)dxand∫ln(f(x)f−1(x))dx Commented by mathmax by abdo last updated on 02/May/20 f(x)=y⇔x=f−1(y)(x⩾1)f(x)=y⇔2x−x−1=y⇒2x−y=x−1⇒(2x−y)2=x−1⇒4x2−4yx+y2−x+1=0⇒4x2−(4y+1)x+y2+1=0Δ=(4y+1)2−16(y2+1)=16y2+8y+1−16y2−16=8y−15ify⩾158x1=4y+1+8y−158andx2=4y+1−8y−158wemusthavex⩾1sox1−1=4y+1+8y−158−1=4y+1+8y−15−88=4y−7+8y−158y⩾158⇒4y−7⩾152−7>0⇒x1>1⇒f−1(x)=4x+1+8x−158⇒∫f(x)f−1(x)dx=8∫2x−x−14x+1+8x−15dxchangementx−1=tgivex−1=t2⇒∫f(x)f−1(x)dx=8∫2(1+t2)−t4(1+t2)+1+8(1+t2)−15(2t)dt=16∫2t3−t2+2t5+4t2+8t2−7dtchangementt=78ch(u)giveI=16∫2(78)3ch3(u)−78ch2(u)+278ch(u)5+72ch2u+8×78shu×78shudu…becontinued… Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: hi-every-one-is-it-right-if-we-use-tylor-in-this-integration-and-if-there-were-another-way-that-will-be-very-cool-sin-x-4-dx-Next Next post: a-1-3-2-a-n-1-4a-n-3-3a-n-n-1-a-n- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.