Menu Close

let-f-x-2-x-x-1-find-f-x-f-1-x-dx-and-ln-f-x-f-1-x-dx-




Question Number 91620 by abdomathmax last updated on 02/May/20
let f(x) =2 x−(√(x−1))  find ∫  ((f(x))/(f^(−1) (x)))dx  and  ∫ ln(((f(x))/(f^(−1) (x))))dx
letf(x)=2xx1findf(x)f1(x)dxandln(f(x)f1(x))dx
Commented by mathmax by abdo last updated on 02/May/20
f(x)=y ⇔x =f^(−1) (y) (x≥1)  f(x)=y ⇔2x−(√(x−1))=y ⇒2x−y =(√(x−1)) ⇒(2x−y)^2 =x−1 ⇒  4x^2 −4yx +y^2 −x+1 =0 ⇒4x^2 −(4y+1)x +y^2  +1 =0  Δ =(4y+1)^2 −16(y^2 +1) =16y^2  +8y+1−16y^2 −16  =8y−15 if y≥((15)/8)x_1 =((4y+1+(√(8y−15)))/8) and x_2 =((4y+1−(√(8y−15)))/8)  we must have x≥1 so  x_1 −1 =((4y+1+(√(8y−15)))/8)−1 =((4y+1+(√(8y−15))−8)/8)  =((4y−7+(√(8y−15)))/8)      y≥((15)/8) ⇒4y−7 ≥((15)/2)−7>0 ⇒x_1 >1 ⇒  f^(−1) (x) =((4x+1+(√(8x−15)))/8) ⇒  ∫ ((f(x))/(f^(−1) (x)))dx =8 ∫  ((2x−(√(x−1)))/(4x+1+(√(8x−15))))dx  changement (√(x−1))=t give  x−1=t^2  ⇒∫ ((f(x))/(f^(−1) (x)))dx =8 ∫  ((2(1+t^2 )−t)/(4(1+t^2 )+1+(√(8(1+t^2 )−15))))(2t)dt  =16 ∫  ((2t^3 −t^2 +2t)/(5+4t^2 +(√(8t^2 −7)))) dt   changement  t =(√(7/8))ch(u) give  I =16 ∫  ((2((√(7/8)))^3 ch^3 (u)−(7/8)ch^2 (u) +2(√(7/8))ch(u))/(5+(7/2)ch^2 u +(√8)×(√(7/8))shu))×(√(7/8))shu du  ...be continued...
f(x)=yx=f1(y)(x1)f(x)=y2xx1=y2xy=x1(2xy)2=x14x24yx+y2x+1=04x2(4y+1)x+y2+1=0Δ=(4y+1)216(y2+1)=16y2+8y+116y216=8y15ify158x1=4y+1+8y158andx2=4y+18y158wemusthavex1sox11=4y+1+8y1581=4y+1+8y1588=4y7+8y158y1584y71527>0x1>1f1(x)=4x+1+8x158f(x)f1(x)dx=82xx14x+1+8x15dxchangementx1=tgivex1=t2f(x)f1(x)dx=82(1+t2)t4(1+t2)+1+8(1+t2)15(2t)dt=162t3t2+2t5+4t2+8t27dtchangementt=78ch(u)giveI=162(78)3ch3(u)78ch2(u)+278ch(u)5+72ch2u+8×78shu×78shudubecontinued

Leave a Reply

Your email address will not be published. Required fields are marked *