Menu Close

let-f-x-2-x-x-3-2-1-find-D-f-2-calculate-f-x-3-determine-f-1-x-4-calculate-f-1-x-5-let-u-x-x-2-4-determine-v-x-fou-x-and-calculate-v-x-6-calculate-




Question Number 39702 by math khazana by abdo last updated on 10/Jul/18
let f(x)=2(√(x−(√(x−3)) +2))  1) find D_f   2) calculate f^′ (x)  3) determine f^(−1) (x)  4) calculate (f^(−1) )^′ (x)  5) let u(x)=x^(2 )  +4  determine  v(x)=fou(x) and calculate  v^′ (x)   6)calculate  ∫_3 ^5  f(x)dx.
letf(x)=2xx3+21)findDf2)calculatef(x)3)determinef1(x)4)calculate(f1)(x)5)letu(x)=x2+4determinev(x)=fou(x)andcalculatev(x)6)calculate35f(x)dx.
Commented by math khazana by abdo last updated on 13/Jul/18
1) x ∈ D_f  ⇔ x≥3 and x+2−(√(x−3))≥0 ⇒  x≥3 and (x+2)^2 ≥x−3 ⇒ x^2  +4x +4−x +3≥0 ⇒  x^2  +3x +7≥0 thisinequality is true because  Δ= 9 −28<0  ⇒ D_f =[3,+∞[  2) we have f^2 (x) =4(x−(√(x−3)) +2) ⇒  2f^′ (x)f(x) =4(1 −(1/(2(√(x−3))))) =4((2(√(x−3))−1)/(2(√(x−3))))  =2((2(√(x−3)) −1)/( (√(x−3)))) ⇒f^′ (x)f(x)=((2(√(x−3))−1)/( (√(x−3)))) ⇒  f^′ (x) = ((2(√(x−3)) −1)/(2(√(x+2−(√(x−3)) )) (√(x−3)))) .
1)xDfx3andx+2x30x3and(x+2)2x3x2+4x+4x+30x2+3x+70thisinequalityistruebecauseΔ=928<0Df=[3,+[2)wehavef2(x)=4(xx3+2)2f(x)f(x)=4(112x3)=42x312x3=22x31x3f(x)f(x)=2x31x3f(x)=2x312x+2x3x3.
Commented by math khazana by abdo last updated on 13/Jul/18
3) f^(−1) (x)=y ⇔x=f(y) ⇒x=2(√(y+2−(√(y−3))))  ⇒x^2  =4(y+2 −(√(y−3))) ⇒  x^2  =4y +8 −4(√(y−3)) ⇒ 4(√(y−3))=4y+8−x^2  ⇒  16( y−3) = (4y+8 −x^2 )^2  ⇒  16y −48 =(4y+8)^2  −2x^2 (4y+8)+x^4   16y −48 =16y^2  +64y +64 −8yx^(2 ) −16x^2  +x^4  ⇒  x^4  −8(y+2)x^2  +16y^2  +64−16y+48=0 ⇒  x^4  −8(y+2)x^2   +16y^2  −16y  + 112 =0  Δ^′  = (−2(y+2))^2  −16y^(2 )  +16y −112  =4(y^2  +4y +4) −16 y^2  +16y −112  =−8y^2  +32y  +16 −112  ...be continued...
3)f1(x)=yx=f(y)x=2y+2y3x2=4(y+2y3)x2=4y+84y34y3=4y+8x216(y3)=(4y+8x2)216y48=(4y+8)22x2(4y+8)+x416y48=16y2+64y+648yx216x2+x4x48(y+2)x2+16y2+6416y+48=0x48(y+2)x2+16y216y+112=0Δ=(2(y+2))216y2+16y112=4(y2+4y+4)16y2+16y112=8y2+32y+16112becontinued
Commented by maxmathsup by imad last updated on 14/Jul/18
5) we have v(x)=f(u(x)) = 2(√(u(x)−(√(u(x)−3))+2))  = 2(√(x^2  +4−(√(x^2  +1))+2))  =2(√(x^2 −(√(x^2 +1))+6))  we have v^2 (x)=4{x^2  −(√(x^2  +1))+2} ⇒  2v(x)v^′ (x) =4{x^2  +2 −(√(x^2  +1))}^′ =4{ 2x−(x/( (√(x^2  +1))))} ⇒  v(x)v^′ (x)=2{((2x(√(x^2  +1))−x)/( (√(x^2  +1))))} ⇒v^′ (x)= (2/(v(x))) ((2x(√(x^2  +1))−x)/( (√(x^2  +1))))  = ((2x(√(x^2  +1))−x)/(((√(x^2 +6−(√(x^2  +1)))((√(x^2  +1))))))).
5)wehavev(x)=f(u(x))=2u(x)u(x)3+2=2x2+4x2+1+2=2x2x2+1+6wehavev2(x)=4{x2x2+1+2}2v(x)v(x)=4{x2+2x2+1}=4{2xxx2+1}v(x)v(x)=2{2xx2+1xx2+1}v(x)=2v(x)2xx2+1xx2+1=2xx2+1x(x2+6x2+1)(x2+1).
Commented by maxmathsup by imad last updated on 14/Jul/18
6)  ∫_3 ^5   f(x)dx = 2 ∫_3 ^5  (√(x+2−(√(x−3)))) dx  changement (√(x−3))=t givex=3+t^2   ∫_3 ^5   f(x)dx = 2 ∫_0 ^(√2) (√(5+t^2 −t))2tdt=4 ∫_0 ^(√2) t(√(t^2  −t +5))dt  =4 ∫_0 ^(√2) t(√((t−(1/2))^2  +5−(1/4)))dt=4 ∫_0 ^(√2) t(√((t−(1/2))^2  +((19)/4)))dt  =_(t−(1/2)=((√(19))/2) sh(u))  4  ∫_(−arsh((1/( (√(19)))))) ^(argsh(((2(√2)−1)/( (√(19))))))  ((1/2) +((√(19))/2)sh(u))ch(u)((√(19))/2) ch(u)du  = (√(19))∫_(−argsh((1/( (√(19)))))) ^(argsh(((2(√2)−1)/( (√(19))))))  (1+(√(19))sh(u))ch(u)du  =(√(19)) ∫_(−argsh((1/( (√(19)))))) ^(argsh(((2(√2)−1)/( (√(19))))))  ch(u)du  +(√(19))∫_(−argsh((1/( (√(19)))))) ^(argsh(((2(√2)−1)/( (√(19))))))  sh(u)ch(u)du  =(√(19{)) ((2(√2)−1)/( (√(19)))) +(1/( (√(19))))}  +((√(19))/2) { (((2(√2)−1)/( (√(19)))))^2 −((1/(19)))}.
6)35f(x)dx=235x+2x3dxchangementx3=tgivex=3+t235f(x)dx=2025+t2t2tdt=402tt2t+5dt=402t(t12)2+514dt=402t(t12)2+194dt=t12=192sh(u)4arsh(119)argsh(22119)(12+192sh(u))ch(u)192ch(u)du=19argsh(119)argsh(22119)(1+19sh(u))ch(u)du=19argsh(119)argsh(22119)ch(u)du+19argsh(119)argsh(22119)sh(u)ch(u)du=19{22119+119}+192{(22119)2(119)}.
Commented by ajfour last updated on 14/Jul/18
Great work sir!
Greatworksir!
Commented by math khazana by abdo last updated on 15/Jul/18
thank you sir.
thankyousir.

Leave a Reply

Your email address will not be published. Required fields are marked *