Menu Close

let-f-x-2x-1-ln-1-x-2-1-calculate-f-n-x-and-f-n-0-2-developp-f-at-integr-serie-3-calculate-0-1-f-x-dx-




Question Number 55269 by maxmathsup by imad last updated on 20/Feb/19
let f(x) =(2x+1)ln(1−x^2 )  1) calculate f^((n)) (x) and f^((n)) (0)  2)developp f at integr serie.  3) calculate ∫_0 ^1 f(x)dx .
letf(x)=(2x+1)ln(1x2)1)calculatef(n)(x)andf(n)(0)2)developpfatintegrserie.3)calculate01f(x)dx.
Commented by turbo msup by abdo last updated on 02/Mar/19
1)leibniz gormula give  f^((n)) (x)=Σ_(k=0) ^n  C_n ^k (2x+1)^((k)) (ln(1−x^2 )^((n−k))   =(2x+1)(ln(1−x^2 )^((n))  +2n(ln(1−x^2 )^((n−1))   we have ln(1−x^2 )^((1))  =((−2x)/(1−x^2 )) ⇒  (ln(1−x^2 )^((n))  =(−((2x)/(1−x^2 )))^((n−1))   =(((2x)/(x^2 −1)))^((n−1))  =((1/(x+1)) +(1/(x−1)))^((n−1))   =((1/(x+1)))^((n−1))  +((1/(x−1)))^((n−1))   =(((−1)^(n−1) (n−1)!)/((x+1)^n )) +(((−1)^(n−1) (n−1)!)/((x−1)^n ))
1)leibnizgormulagivef(n)(x)=k=0nCnk(2x+1)(k)(ln(1x2)(nk)=(2x+1)(ln(1x2)(n)+2n(ln(1x2)(n1)wehaveln(1x2)(1)=2x1x2(ln(1x2)(n)=(2x1x2)(n1)=(2xx21)(n1)=(1x+1+1x1)(n1)=(1x+1)(n1)+(1x1)(n1)=(1)n1(n1)!(x+1)n+(1)n1(n1)!(x1)n
Commented by turbo msup by abdo last updated on 02/Mar/19
also (ln(1−x^2 ))^((n−1))   =(((−1)^(n−2) (n−2)!)/((x+1)^(n−1) )) +(((−1)^(n−2) (n−2)!)/((x−1)^(n−1) )) ⇒  f^((n)) (x) =(2x+1)(−1)^(n−1) (n−1)!{(1/((x+1)^n )) +(1/((x−1)^n ))}  +2n(−1)^(n−2) (n−2)!{(1/((x+1)^(n−1) )) +(1/((x−1)^(n−1) ))}
also(ln(1x2))(n1)=(1)n2(n2)!(x+1)n1+(1)n2(n2)!(x1)n1f(n)(x)=(2x+1)(1)n1(n1)!{1(x+1)n+1(x1)n}+2n(1)n2(n2)!{1(x+1)n1+1(x1)n1}
Commented by maxmathsup by imad last updated on 02/Mar/19
⇒f^((n)) (0) =(−1)^(n−1) (n−1)!{1+(−1)^n } +2n(−1)^n (n−2)!{1+(−1)^(n−1) }  =−(−1)^n (n−1)!{1+(−1)^n } +2n(−1)^n (n−2)!{1−(−1)^n } ⇒  f^((n)) (0) =−(−1)^n (n−1)(n−2)!{1+(−1)^n } +2n(−1)^n (n−2)!{1−(−1)^n }  =(−1)^n (n−2)!{(1−n)(1+(−1)^n ) +2n{1−(−1)^n }}  =(−1)^n (n−2)!{1+(−1)^n −n−n(−1)^n  +2n−2n(−1)^n }  =(−1)^n (n−2)!{ 1+(1−3n)(−1)^n  +n}
f(n)(0)=(1)n1(n1)!{1+(1)n}+2n(1)n(n2)!{1+(1)n1}=(1)n(n1)!{1+(1)n}+2n(1)n(n2)!{1(1)n}f(n)(0)=(1)n(n1)(n2)!{1+(1)n}+2n(1)n(n2)!{1(1)n}=(1)n(n2)!{(1n)(1+(1)n)+2n{1(1)n}}=(1)n(n2)!{1+(1)nnn(1)n+2n2n(1)n}=(1)n(n2)!{1+(13n)(1)n+n}
Commented by maxmathsup by imad last updated on 02/Mar/19
f^′ (x)=2ln(1−x^2 ) +(2x+1)((−2x)/(1−x^2 )) ⇒f^′ (0)=0 and f(0)=0  f(x)=Σ_(n=0) ^∞  ((f^((n)) (0))/(n!)) x^n  =Σ_(n=2) ^∞   (((−1)^n )/(n(n−1))){n+1+(1−3n)(−1)^n } x^n   =Σ_(n=2) ^∞   (((n+1)(−1)^n +1−3n)/(n(n−1)))x^n
f(x)=2ln(1x2)+(2x+1)2x1x2f(0)=0andf(0)=0f(x)=n=0f(n)(0)n!xn=n=2(1)nn(n1){n+1+(13n)(1)n}xn=n=2(n+1)(1)n+13nn(n1)xn

Leave a Reply

Your email address will not be published. Required fields are marked *