Menu Close

let-f-x-2x-4x-dt-t-2-2t-3-1-find-f-x-2-calculate-lim-x-0-f-x-and-lim-x-f-x-




Question Number 57416 by Abdo msup. last updated on 03/Apr/19
let f(x)=∫_(2x) ^(4x)     (dt/(t^2 −2t +3))  1)find f(x)  2) calculate lim_(x→0) f(x) and lim_(x→+∞) f(x)
letf(x)=2x4xdtt22t+31)findf(x)2)calculatelimx0f(x)andlimx+f(x)
Commented by maxmathsup by imad last updated on 04/Apr/19
1)we have f(x)=∫_(2x) ^(4x)   (dt/(t^2 −2t+1+2)) =∫_(2x) ^(4x)   (dt/((t−1)^2  +2)) =_(t−1=(√2)u)   ∫_((2x−1)/( (√2))) ^((4x−1)/( (√2)))    (((√2)du)/(2(1+u^2 )))  =(1/( (√2))) [arctanu]_((2x−1)/( (√2))) ^((4x−1)/( (√2)))      =(1/( (√2))){arctan(((4x−1)/( (√2))))−arctan(((2x−1)/( (√2))))}  2) we have lim_(x→0) f(x)=(1/( (√2))){ −arctan((1/( (√2)))) +arctan((1/( (√2))))}=0  also  lim_(x→+∞) f(x) =(1/( (√2))){(π/2) −(π/2)} =0 .
1)wehavef(x)=2x4xdtt22t+1+2=2x4xdt(t1)2+2=t1=2u2x124x122du2(1+u2)=12[arctanu]2x124x12=12{arctan(4x12)arctan(2x12)}2)wehavelimx0f(x)=12{arctan(12)+arctan(12)}=0alsolimx+f(x)=12{π2π2}=0.

Leave a Reply

Your email address will not be published. Required fields are marked *