Menu Close

let-f-x-2x-x-1-find-f-1-x-dx-




Question Number 41136 by math khazana by abdo last updated on 02/Aug/18
let f(x)=2x−(√(x−1))  find  ∫ f^(−1) (x)dx .
letf(x)=2xx1findf1(x)dx.
Answered by MJS last updated on 02/Aug/18
f(x) defined for x∈[1; +∞]  f′(x)=2−(1/(2(√(x−1))))=0 ⇒ x=((17)/(16))  f′′(x)=(1/(4(x−1)^(3/2) )); f′′(((17)/(16)))=16>0 ⇒ min at  ((((17)/(16))),(((15)/8)) )  range(f(x))=[((15)/8); +∞[  x=2y−(√(y−1))  (√(y−1))=2y−x  y−1=4y^2 −4xy+x^2   y^2 −(x+(1/4))y+((x^2 +1)/4)=0  y_1 =(x/2)+(1/8)−((√(8x−15))/8)  defined for x∈[((15)/8); +∞]  y_1 ′=(1/2)−(1/(2(√(8x−15))))=0 ⇒ x=2  y_1 ′′=(2/((8x−15)^(3/2) )); x=2 ⇒ y_2 ′′=2>0 ⇒ min at  ((2),(1) )  range=[1; +∞]  y_2 =(x/2)+(1/8)+((√(8x−15))/8)  defined for x∈[((15)/8); +∞]  y_2 ′=(1/2)+(1/(2(√(8x−15))))=0 ⇒ no solution  range=[((17)/(16)); +∞]  f^(−1) (x)= { (((x/2)+(1/8)−((√(8x−15))/8); x∈[((15)/8); 2])),(((x/2)+(1/8)+((√(8x−15))/8); x∈]((15)/8); +∞[)) :}  ∫f^(−1) (x)dx= { (((x^2 /4)+(x/8)−(((8x−15)^(3/2) )/(96)); x∈[((15)/8); 2])),(((x^2 /4)+(x/8)+(((8x−15)^(3/2) )/(96)); x∈]((15)/8); +∞[)) :}  but of course if you want the area between  this function and the x−axis you must take  ∫f^(−1) (x)dx= { (((x^2 /4)+(x/8)−(((8x−15)^(3/2) )/(96)); x∈[((15)/8); 2])),(((x^2 /4)+(x/8)+(((8x−15)^(3/2) )/(96)); x∈]2; +∞[)) :}
f(x)definedforx[1;+]f(x)=212x1=0x=1716f(x)=14(x1)32;f(1716)=16>0minat(1716158)range(f(x))=[158;+[x=2yy1y1=2yxy1=4y24xy+x2y2(x+14)y+x2+14=0y1=x2+188x158definedforx[158;+]y1=12128x15=0x=2y1=2(8x15)32;x=2y2=2>0minat(21)range=[1;+]y2=x2+18+8x158definedforx[158;+]y2=12+128x15=0nosolutionrange=[1716;+]f1(x)={x2+188x158;x[158;2]x2+18+8x158;x]158;+[f1(x)dx={x24+x8(8x15)3296;x[158;2]x24+x8+(8x15)3296;x]158;+[butofcourseifyouwanttheareabetweenthisfunctionandthexaxisyoumusttakef1(x)dx={x24+x8(8x15)3296;x[158;2]x24+x8+(8x15)3296;x]2;+[
Commented by math khazana by abdo last updated on 03/Aug/18
thank you sir mjs for this hard work .
thankyousirmjsforthishardwork.

Leave a Reply

Your email address will not be published. Required fields are marked *