Menu Close

let-f-x-2x-x-1-find-f-1-x-f-x-dx-




Question Number 89717 by abdomathmax last updated on 18/Apr/20
let  f(x)=2x−(√(x−1))  find ∫   ((f^(−1) (x))/(f(x)))dx
$${let}\:\:{f}\left({x}\right)=\mathrm{2}{x}−\sqrt{{x}−\mathrm{1}} \\ $$$${find}\:\int\:\:\:\frac{{f}^{−\mathrm{1}} \left({x}\right)}{{f}\left({x}\right)}{dx}\:\: \\ $$
Answered by MJS last updated on 19/Apr/20
y=2x−(√(x−1))  defined for x≥1  range y≥((17)/(16))  f^(−1) (x)= { ((y=((4x+1−(√(8x−15)))/8); ((15)/8)≤x≤2)),((y=((4x+1+(√(8x−15)))/8); x≥((15)/8))) :}    ∫((f^(−1) (x))/(f(x)))dx=(1/8)∫((4x+1)/(2x−(√(x−1))))dx±(1/8)∫((√(8x−15))/(2x−(√(x−1))))dx  it′s easy to solve the first one but the second  one takes a lot of time and space...
$${y}=\mathrm{2}{x}−\sqrt{{x}−\mathrm{1}} \\ $$$$\mathrm{defined}\:\mathrm{for}\:{x}\geqslant\mathrm{1} \\ $$$$\mathrm{range}\:{y}\geqslant\frac{\mathrm{17}}{\mathrm{16}} \\ $$$${f}^{−\mathrm{1}} \left({x}\right)=\begin{cases}{{y}=\frac{\mathrm{4}{x}+\mathrm{1}−\sqrt{\mathrm{8}{x}−\mathrm{15}}}{\mathrm{8}};\:\frac{\mathrm{15}}{\mathrm{8}}\leqslant{x}\leqslant\mathrm{2}}\\{{y}=\frac{\mathrm{4}{x}+\mathrm{1}+\sqrt{\mathrm{8}{x}−\mathrm{15}}}{\mathrm{8}};\:{x}\geqslant\frac{\mathrm{15}}{\mathrm{8}}}\end{cases} \\ $$$$ \\ $$$$\int\frac{{f}^{−\mathrm{1}} \left({x}\right)}{{f}\left({x}\right)}{dx}=\frac{\mathrm{1}}{\mathrm{8}}\int\frac{\mathrm{4}{x}+\mathrm{1}}{\mathrm{2}{x}−\sqrt{{x}−\mathrm{1}}}{dx}\pm\frac{\mathrm{1}}{\mathrm{8}}\int\frac{\sqrt{\mathrm{8}{x}−\mathrm{15}}}{\mathrm{2}{x}−\sqrt{{x}−\mathrm{1}}}{dx} \\ $$$$\mathrm{it}'\mathrm{s}\:\mathrm{easy}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{the}\:\mathrm{first}\:\mathrm{one}\:\mathrm{but}\:\mathrm{the}\:\mathrm{second} \\ $$$$\mathrm{one}\:\mathrm{takes}\:\mathrm{a}\:\mathrm{lot}\:\mathrm{of}\:\mathrm{time}\:\mathrm{and}\:\mathrm{space}… \\ $$
Commented by mathmax by abdo last updated on 19/Apr/20
thank you sir
$${thank}\:{you}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *