let-f-x-arctan-1-2x-1-calculate-f-n-x-then-f-n-0-2-developp-f-at-integr-serie-we-have-f-x-2-1-1-2x-2-f-n-x-2-1-2x-1-2-1-n-1-with-n-gt-0-let-W-x- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 53957 by maxmathsup by imad last updated on 05/Feb/19 letf(x)=arctan(1+2x)1)calculatef(n)(x)thenf(n)(0)2)developpfatintegrserie.wehavef′(x)=21+(1+2x)2⇒f(n)(x)=2{1(2x+1)2+1}(n−1)withn>0letW(x)=1(2x+1)2+1⇒W(x)=1(2x+1+i)(2x+1−i)=14(x+1+i2)(x+1−i2)=14(x+12eiπ4)(x+12e−iπ4)but(1x+12e−iπ4−1x+12eiπ4)=12(2isin(π4))(x+12e−iπ4)(x+12eiπ4)⇒W(x)=14i{1x+12e−iπ4−1x+12eiπ4}⇒W(n−1)(x)=14i{(−1)n−1(n−1)!(x+12e−iπ4)n−(−1)n−1(n−1)!(x+12eiπ4)n}⇒f(n)(x)=(−1)n−1(n−1)!2i{1(x+12e−iπ4)n−1(x+12eiπ4)n}andf(n)(0)=(−1)n−1(n−1)!2i{12)−ne−inπ4−1(2)−neinπ4}=(−1)n−1(n−1)!2i{(2)neinπ4−(2)ne−inπ4}=(−1)n−1(n−1)!2i(2)n2isin(nπ4)=(−1)n−1(n−1)!(2)nsin(nπ4) Commented by maxmathsup by imad last updated on 05/Feb/19 2)wehavef(x)=∑n=0∞xnn!f(n)(0)=π4+∑n=1∞(−1)n−1(2)nnsin(nπ4)xn. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: give-0-1-e-x-ln-1-x-dx-at-form-of-serie-Next Next post: find-the-value-of-0-1-ln-x-ln-1-x-2-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.