Menu Close

let-f-x-arctan-1-ix-determine-Re-f-x-and-Im-f-x-dx-




Question Number 59182 by maxmathsup by imad last updated on 05/May/19
let f(x) =arctan(1+ix)  determine Re(f(x)) and Im(f(x))dx
letf(x)=arctan(1+ix)determineRe(f(x))andIm(f(x))dx
Commented by maxmathsup by imad last updated on 10/Jun/19
we have f^′ (x) =(i/(1+(1+ix)^2 )) =(i/(1+1+2ix −x^2 )) =(i/(−x^2  +2ix +2))  =((−i)/(x^2 −2ix −2)) =((−i)/(x^2 −2−2ix)) =((−i(x^2 −2+2ix))/((x^2 −2)^2  +4x^2 ))=((2x)/((x^2 −2)^2  +4x^2 )) −i(x^2 /((x^2 −2)^2  +4x^2 ))  ⇒f(x) =∫   ((2xdx)/((x^2 −2)^2  +4x^2 )) +c_0 −i (∫   ((x^2 dx)/((x^2 −2)^2  +4x^2 )) +c_1 ) ⇒  Re(f(x)) =∫  ((2xdx)/((x^2 −2)^2  +4x^2 )) +c_0   and Im(f(x)) =∫   ((x^2 dx)/((x^2 −2)^2  +4x^2 )) +c_1   c_0 and c_1  reals  ∫   ((2xdx)/((x^2 −2)^2  +4x^2 )) =∫  ((2xdx)/(x^4 −4x^2  +4  +4x^2 )) = ∫   ((2x dx)/(x^4  +4))  x^4   +4 =(x^2 )^2  +2^2  =(x^2  +2)^2 −4x^2  =(x^2  +2−2x)(x^2 +2+2x) ⇒  F(x) =((2x)/(x^4  +4)) =((2x)/((x^2 −2x+2)(x^2  +2x +2))) =((ax +b)/(x^2 −2x +2)) +((cx+d)/(x^2 +2x+2)) ⇒  ∫ F(x)dx[=∫  ((ax+b)/(x^2 −2x+2)) dx +∫   ((cx +d)/(x^2 +2x +2))dx =....be continued ....
wehavef(x)=i1+(1+ix)2=i1+1+2ixx2=ix2+2ix+2=ix22ix2=ix222ix=i(x22+2ix)(x22)2+4x2=2x(x22)2+4x2ix2(x22)2+4x2f(x)=2xdx(x22)2+4x2+c0i(x2dx(x22)2+4x2+c1)Re(f(x))=2xdx(x22)2+4x2+c0andIm(f(x))=x2dx(x22)2+4x2+c1c0andc1reals2xdx(x22)2+4x2=2xdxx44x2+4+4x2=2xdxx4+4x4+4=(x2)2+22=(x2+2)24x2=(x2+22x)(x2+2+2x)F(x)=2xx4+4=2x(x22x+2)(x2+2x+2)=ax+bx22x+2+cx+dx2+2x+2F(x)dx[=ax+bx22x+2dx+cx+dx2+2x+2dx=.becontinued.
Commented by mathmax by abdo last updated on 22/Jun/19
∫   ((2xdx)/((x^2 −2)^2  +4x^2 )) =_(x^2  =t)     ∫  (dt/((t−2)^2  +4t)) =∫   (dt/(t^2 −4t +4 +4t)) =∫   (dt/(4+t^2 ))  =_(t =2u)     ∫   ((2du)/(4+4u^2 )) =(1/2) ∫   (du/(1+u^2 )) =(1/2) arctan(u)+c =(1/2) arctan((x^2 /2)) +c ⇒  Re(f(x)) =(1/2) arctan((x^2 /(2 )))+c_0
2xdx(x22)2+4x2=x2=tdt(t2)2+4t=dtt24t+4+4t=dt4+t2=t=2u2du4+4u2=12du1+u2=12arctan(u)+c=12arctan(x22)+cRe(f(x))=12arctan(x22)+c0

Leave a Reply

Your email address will not be published. Required fields are marked *