let-f-x-arctan-1-ix-determine-Re-f-x-and-Im-f-x-dx- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 59182 by maxmathsup by imad last updated on 05/May/19 letf(x)=arctan(1+ix)determineRe(f(x))andIm(f(x))dx Commented by maxmathsup by imad last updated on 10/Jun/19 wehavef′(x)=i1+(1+ix)2=i1+1+2ix−x2=i−x2+2ix+2=−ix2−2ix−2=−ix2−2−2ix=−i(x2−2+2ix)(x2−2)2+4x2=2x(x2−2)2+4x2−ix2(x2−2)2+4x2⇒f(x)=∫2xdx(x2−2)2+4x2+c0−i(∫x2dx(x2−2)2+4x2+c1)⇒Re(f(x))=∫2xdx(x2−2)2+4x2+c0andIm(f(x))=∫x2dx(x2−2)2+4x2+c1c0andc1reals∫2xdx(x2−2)2+4x2=∫2xdxx4−4x2+4+4x2=∫2xdxx4+4x4+4=(x2)2+22=(x2+2)2−4x2=(x2+2−2x)(x2+2+2x)⇒F(x)=2xx4+4=2x(x2−2x+2)(x2+2x+2)=ax+bx2−2x+2+cx+dx2+2x+2⇒∫F(x)dx[=∫ax+bx2−2x+2dx+∫cx+dx2+2x+2dx=….becontinued…. Commented by mathmax by abdo last updated on 22/Jun/19 ∫2xdx(x2−2)2+4x2=x2=t∫dt(t−2)2+4t=∫dtt2−4t+4+4t=∫dt4+t2=t=2u∫2du4+4u2=12∫du1+u2=12arctan(u)+c=12arctan(x22)+c⇒Re(f(x))=12arctan(x22)+c0 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: if-8-error-is-made-on-x-what-is-the-percentage-error-on-x-1-5-Next Next post: calculate-0-arctan-1-ix-2-x-2-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.