Menu Close

let-f-x-arctan-1-x-2-1-calculate-f-n-x-and-f-n-0-2-developpf-at-integr-serie-




Question Number 81720 by mathmax by abdo last updated on 14/Feb/20
let f(x)=arctan(1+x^2 )  1) calculate f^((n)) (x) and f^((n)) (0)  2) developpf at integr serie
letf(x)=arctan(1+x2)1)calculatef(n)(x)andf(n)(0)2)developpfatintegrserie
Commented by mathmax by abdo last updated on 15/Feb/20
1) we have f^′ (x)=((2x)/(1+(1+x^2 )^2 )) =((2x)/(1+x^4  +2x^2  +1)) =((2x)/(x^4  +2x^2  +2))  x^4  +2x^2 +2=0 →t^2 +2t +2=0  (t=x^2 )→Δ^′ =1−2=−1 ⇒  x_1 =−1+i  =(√2)e^(i((3π)/4))   and x_2 =−1−i =(√2)e^(−((i3π)/4))  ⇒  f^′ (x)=((2x)/((x^2 −(√2)e^((i3π)/4) )(x^2 −(√2)e^(−((i3π)/4)) ))) =((2x)/((x−αe^((i3π)/8) )(x+α e^((i3π)/8) )(x−α e^(−((i3π)/8)) )(x+α e^(−((i3π)/8)) 3))  =(a/(x−α e^((i3π)/8) )) +(b/(x+α e^((i3π)/8) )) +(c/(x−α e^(−i((3π)/8)) )) +(d/((x +e^(−((i3π)/8)) )))   (α=(√(√2)))  a =((2α e^((i3π)/8) )/(2α e^((i3π)/8) (√2) (2i)×((√2)/2))) =(1/(2i))  b=((−2α e^((i3π)/8) )/(−2α e^((i3π)/8) (√2)(2i)×((√2)/2))) =(1/(2i))  c =((2α e^(−((i3π)/8)) )/(2α e^(−((i3π)/8)) (√2)(−2i)×((√2)/2))) =−(1/(2i))  d =((−2α e^(−((i3π)/8)) )/(−2α e^(−((i3π)/8)) (√2)(−2i)×((√2)/2))) =−(1/(2i)) ⇒  f^′ (x) =(1/(2i)){  (1/(x−α e^((i3π)/8) )) +(1/(x+α e^((i3π)/8) )) −(1/(x−α e^(−((i3π)/8)) ))−(1/(x+α e^(−((i3π)/8)) ))} ⇒  f^((n)) (x) =(1/(2i)){  (((−1)^(n−1) (n−1)!)/((x−α e^((i3π)/8) )^n )) +(((−1)^(n−1) (n−1)!)/((x+α e^((i3π)/8) )^n ))  −(((−1)^(n−1) (n−1)!)/((x−αe^(−((i3π)/8)) )^n ))−(((−1)^(n−1) (n−1)!)/((x+αe^(−((i3π)/8)) )^n ))}  =(((−1)^(n−1) (n−1)!)/(2i)){(1/((x−α e^((i3π)/8) )^n ))−(1/((x−α e^(−((i3π)/8)) )^n )) +(1/((x+α e^(−((i3π)/8)) )^n ))  −(1/((x +α e^(−((i3π)/8)) )^n ))}  =(((−1)^(n−1) (n−1)!)/(2i)){((−2i Im(x−α e^(−((i3π)/8)) )^n )/((x^2 −2α cos(((3π)/8))x +α^2 )^n )) +((−2i Im(x+α e^(−((i3π)/8)) )^n )/((x^2  +2α cos(((3π)/8))x +α^2 )^n ))}  f^((n)) (x)=(−1)^n (n−1)!{((Im(x−α e^(−((i3π)/8)) )^n )/((x^2 −2α cos(((3π)/8))x +α^2 )^n )) +((Im(x+αe^(−((i3π)/8)) )^n )/((x^2  +2α cos(((3π)/8))x+α^2 )^n ))}
1)wehavef(x)=2x1+(1+x2)2=2x1+x4+2x2+1=2xx4+2x2+2x4+2x2+2=0t2+2t+2=0(t=x2)Δ=12=1x1=1+i=2ei3π4andx2=1i=2ei3π4f(x)=2x(x22ei3π4)(x22ei3π4)=2x(xαei3π8)(x+αei3π8)(xαei3π8)(x+αei3π83=axαei3π8+bx+αei3π8+cxαei3π8+d(x+ei3π8)(α=2)a=2αei3π82αei3π82(2i)×22=12ib=2αei3π82αei3π82(2i)×22=12ic=2αei3π82αei3π82(2i)×22=12id=2αei3π82αei3π82(2i)×22=12if(x)=12i{1xαei3π8+1x+αei3π81xαei3π81x+αei3π8}f(n)(x)=12i{(1)n1(n1)!(xαei3π8)n+(1)n1(n1)!(x+αei3π8)n(1)n1(n1)!(xαei3π8)n(1)n1(n1)!(x+αei3π8)n}=(1)n1(n1)!2i{1(xαei3π8)n1(xαei3π8)n+1(x+αei3π8)n1(x+αei3π8)n}=(1)n1(n1)!2i{2iIm(xαei3π8)n(x22αcos(3π8)x+α2)n+2iIm(x+αei3π8)n(x2+2αcos(3π8)x+α2)n}f(n)(x)=(1)n(n1)!{Im(xαei3π8)n(x22αcos(3π8)x+α2)n+Im(x+αei3π8)n(x2+2αcos(3π8)x+α2)n}
Commented by mathmax by abdo last updated on 15/Feb/20
f^((n)) (0) =(−1)^n (n−1)!{((Im(−α)^n  e^(−((i3nπ)/8)) )/α^(2n) ) +((Im(α^n  e^(−((i3nπ)/8)) ))/α^(2n) )  =(((−1)^n (n−1)!)/2^(n/2) ){−(−α)^n sin(((3nπ)/8))−α^n  sin(((3nπ)/8))}  =(−1)^(n+1) (n−1)!(({2^(n/4) +(−1)^n  2^(n/4) }sin(((3nπ)/8)))/2^(n/2) )  =(((−1)^(n+1) (n−1)!)/2^(n/4) )(1+(−1)^n )sin(((3nπ)/8))
f(n)(0)=(1)n(n1)!{Im(α)nei3nπ8α2n+Im(αnei3nπ8)α2n=(1)n(n1)!2n2{(α)nsin(3nπ8)αnsin(3nπ8)}=(1)n+1(n1)!{2n4+(1)n2n4}sin(3nπ8)2n2=(1)n+1(n1)!2n4(1+(1)n)sin(3nπ8)

Leave a Reply

Your email address will not be published. Required fields are marked *