let-f-x-arctan-1-x-2-1-calculate-f-n-x-and-f-n-0-2-developpf-at-integr-serie- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 81720 by mathmax by abdo last updated on 14/Feb/20 letf(x)=arctan(1+x2)1)calculatef(n)(x)andf(n)(0)2)developpfatintegrserie Commented by mathmax by abdo last updated on 15/Feb/20 1)wehavef′(x)=2x1+(1+x2)2=2x1+x4+2x2+1=2xx4+2x2+2x4+2x2+2=0→t2+2t+2=0(t=x2)→Δ′=1−2=−1⇒x1=−1+i=2ei3π4andx2=−1−i=2e−i3π4⇒f′(x)=2x(x2−2ei3π4)(x2−2e−i3π4)=2x(x−αei3π8)(x+αei3π8)(x−αe−i3π8)(x+αe−i3π83=ax−αei3π8+bx+αei3π8+cx−αe−i3π8+d(x+e−i3π8)(α=2)a=2αei3π82αei3π82(2i)×22=12ib=−2αei3π8−2αei3π82(2i)×22=12ic=2αe−i3π82αe−i3π82(−2i)×22=−12id=−2αe−i3π8−2αe−i3π82(−2i)×22=−12i⇒f′(x)=12i{1x−αei3π8+1x+αei3π8−1x−αe−i3π8−1x+αe−i3π8}⇒f(n)(x)=12i{(−1)n−1(n−1)!(x−αei3π8)n+(−1)n−1(n−1)!(x+αei3π8)n−(−1)n−1(n−1)!(x−αe−i3π8)n−(−1)n−1(n−1)!(x+αe−i3π8)n}=(−1)n−1(n−1)!2i{1(x−αei3π8)n−1(x−αe−i3π8)n+1(x+αe−i3π8)n−1(x+αe−i3π8)n}=(−1)n−1(n−1)!2i{−2iIm(x−αe−i3π8)n(x2−2αcos(3π8)x+α2)n+−2iIm(x+αe−i3π8)n(x2+2αcos(3π8)x+α2)n}f(n)(x)=(−1)n(n−1)!{Im(x−αe−i3π8)n(x2−2αcos(3π8)x+α2)n+Im(x+αe−i3π8)n(x2+2αcos(3π8)x+α2)n} Commented by mathmax by abdo last updated on 15/Feb/20 f(n)(0)=(−1)n(n−1)!{Im(−α)ne−i3nπ8α2n+Im(αne−i3nπ8)α2n=(−1)n(n−1)!2n2{−(−α)nsin(3nπ8)−αnsin(3nπ8)}=(−1)n+1(n−1)!{2n4+(−1)n2n4}sin(3nπ8)2n2=(−1)n+1(n−1)!2n4(1+(−1)n)sin(3nπ8) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-147252Next Next post: Question-147259 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.