Menu Close

let-f-x-arctan-1-x-and-f-n-x-e-nx-1-define-fof-n-x-and-f-n-of-x-2-study-the-nature-of-the-series-n-0-fof-n-x-and-n-0-f-n-of-x-




Question Number 35766 by abdo mathsup 649 cc last updated on 23/May/18
let f(x)=arctan(1+x)  and  f_n (x)= e^(−nx)   1) define fof_n (x) and f_n of(x)  2) study the nature of the series Σ_(n=0) ^(+∞) fof_n (x)  and Σ_(n=0) ^∞  f_n of(x) .
letf(x)=arctan(1+x)andfn(x)=enx1)definefofn(x)andfnof(x)2)studythenatureoftheseriesn=0+fofn(x)andn=0fnof(x).
Commented by maxmathsup by imad last updated on 02/Sep/18
1) we have fof_n (x)=f(f_n (x))=arctan(1+f_n (x))=arctan(1+e^(−nx) )  f_n 0f(x) = f_n (f(x))=e^(−nf(x)) =e^(−narctan(1+x))   2)Σ_(n=0) ^∞  fof_n (x) =Σ_(n=0) ^∞  arctan(1+e^(−nx) ) =Σ u_n (x)  if x<0  lim_(n→+∞) arctan(1+e^(−nx) ) ≠0  so Σ u_n (x)diverges  if x>0  u_n (x)∼ e^(−nx)    (n→+∞)  but Σ e^(−nx)  converges so the convergence  simple of Σ u_n (x) is assured.also  Σ f_n of  = Σ_n  e^(−n arctan(1+x))    =Σ_n     (e^(−arctan(1+x)) )^n  ⇒  if arctan(1+x)>0  the serie converges  if arctan(1+x)<0 the serie diverges.
1)wehavefofn(x)=f(fn(x))=arctan(1+fn(x))=arctan(1+enx)fn0f(x)=fn(f(x))=enf(x)=enarctan(1+x)2)n=0fofn(x)=n=0arctan(1+enx)=Σun(x)ifx<0limn+arctan(1+enx)0soΣun(x)divergesifx>0un(x)enx(n+)butΣenxconvergessotheconvergencesimpleofΣun(x)isassured.alsoΣfnof=nenarctan(1+x)=n(earctan(1+x))nifarctan(1+x)>0theserieconvergesifarctan(1+x)<0theseriediverges.

Leave a Reply

Your email address will not be published. Required fields are marked *