let-f-x-arctan-2-x-calculate-f-n-x-and-f-n-1-find-f-7-1-7- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 124066 by Bird last updated on 30/Nov/20 letf(x)=arctan(2x)calculatef(n)(x)andf(n)(1)findf(7)(17) Answered by Olaf last updated on 30/Nov/20 f(x)=arctan(2x)f′(x)=−2x2×11+4x2=−2x2+4f′(x)=i2[1x−2i−1x+2i]f(n)(x)=i2(−1)n−1(n−1)![1(x−2i)n−1(x+2i)n]f(n)(x)=i2(−1)n−1(n−1)![1(x2+4e−iarctan2x)n−1(x2+4eiarctan2x)n]f(n)(x)=i(−1)n−1(n−1)!2(x2+4)n2[1e−inarctan2x−1einarctan2x]f(n)(x)=i(−1)n−1(n−1)!2(x2+4)n2[einarctan2x−e−inarctan2x]f(n)(x)=−(−1)n−1(n−1)!(x2+4)n2sin(narctan2x)f(n)(x)=(−1)n(n−1)!(x2+4)n2sin(narctan2x)f(n)(1)=(−1)n(n−1)!5n2sin(narctan2)f(7)(x)=(−1)76!(x2+4)72sin(17arctan2x)f(7)(x)=−720(x2+4)72sin(17arctan2x)f(7)(17)=−720(149+4)72sin(17arctan14)f(7)(17)=−720(19749)72sin(17arctan14)f(7)(17)=−720×771973197sin(17arctan14)f(7)(17)=−82354338809197sin(17arctan14)…maybe… Commented by mathmax by abdo last updated on 30/Nov/20 thankyousir. Answered by mathmax by abdo last updated on 04/Dec/20 wehavef(x)=arctan(2x)⇒f(1)(x)=−2x2(1+4x2)=−2x2+4=−2(x−2i)(x+2i)=−24i{1x−2i−1x+2i}=12i{1x+2i−1x−2i}⇒f(n)(x)=12i{(1x+2i))n−1)−(1x−2i)(n−1)}=12i{(−1)n−1(n−1)!(x+2i)n−(−1)n−1(n−1)!(x−2i)n}⇒f(n)(x)=(−1)n−1(n−1)!2i{(x−2i)n−(x+2i)n(x2+4)n}(n>0)f(n)(1)=(−1)n−1(n−1)!2i{(1−2i)n−(1+2i)n5n}but1−2i=5e−iarctan(2)and1+2i=5eiarctan(2)⇒(1−2i)n−(1+2i)n=−5{eiarctan(2)−e−iarctan(2)}=−5(2isin(arctan(2))}⇒f(n)(1)=(−1)n−1(n−1)!2i5n(−52isin(arctan(2))=15n−12(−1)n(n−1)!sin(arctan2) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-189603Next Next post: Question-189601 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.