Menu Close

let-f-x-arctan-2x-1-1-calculate-f-n-x-2-calculate-f-n-0-3-developp-f-at-integr-serie-4-calculate-0-1-f-x-dx-5-calculate-0-1-arctan-2x-1-4x-2-4x-2-dx-




Question Number 39891 by math khazana by abdo last updated on 13/Jul/18
let f(x)=arctan(2x+1)  1) calculate  f^((n)) (x)  2) calculate f^((n)) (0)  3) developp f at integr serie  4) calculate  ∫_0 ^1    f(x)dx  5) calculate  ∫_0 ^1    ((arctan(2x+1))/(4x^2  +4x +2))dx
letf(x)=arctan(2x+1)1)calculatef(n)(x)2)calculatef(n)(0)3)developpfatintegrserie4)calculate01f(x)dx5)calculate01arctan(2x+1)4x2+4x+2dx
Commented by maxmathsup by imad last updated on 13/Jul/18
1) we have f^′ (x)= (2/(1+(2x+1)^2 )) ⇒f^((n)) (x)=2  ((1/((2x+1)^2 +1)))^((n−1))   let w(x)= (1/((2x+1)^2  +1))  .let decompose w inside C(x)  w(x)= (1/((2x+1−i)(2x+1 +i))) = (1/(4(x +((1−i)/2))(x +((1+i)/2))))  =(1/(4(x +(1/( (√2)))e^(−((iπ)/4)) )(x  +(1/( (√2)))e^(i(π/4)) ))) = (a/(x+(1/( (√2)))e^(−((iπ)/4)) )) +(b/(x+(1/( (√2)))e^((iπ)/4) ))  a =lim_(x→−(1/( (√2)))e^(−((iπ)/4)) )    (x +(1/( (√2)))e^(−((iπ)/4)) )w(x)=  (1/(4(1/( (√2)))(e^((iπ)/4)  −e^(−((iπ)/4)) ))) = ((√2)/(4(2i(1/( (√2)))))) = (1/(4i))  b =lim_(x→−(1/( (√2))) e^(i(π/4)) )    (x+ (1/( (√2))) e^((iπ)/4) )w(x)=  (1/(4(1/( (√2) ))(−e^((iπ)/4)  +e^(−((iπ)/4)) ))) =((√2)/(−4(2i(1/( (√2))))))  = ((−2)/(8i)) = −(1/(4i)) ⇒w(x)= (1/(4i)){    (1/(x+(1/( (√2)))e^(−((iπ)/4)) )) −(1/(x +(1/( (√2)))e^((iπ)/4) ))} ⇒  w^((n−1)) = (1/(4i)){   (((−1)^(n−1) (n−1)!)/((x +(1/( (√2)))e^(−((iπ)/4)) )^n )) −(((−1)^(n−1) (n−1)!)/((x +(1/( (√2)))e^((iπ)/4) )^n ))} ⇒  f^((n)) (x) =2 w^((n−1)) (x) = (((−1)^(n−1) (n−1)!)/(2i)){   (1/((x +(1/( (√2)))e^(−((iπ)/4)) )^n )) −(1/((x +(1/( (√2)))e^((iπ)/4) )^n ))}.
1)wehavef(x)=21+(2x+1)2f(n)(x)=2(1(2x+1)2+1)(n1)letw(x)=1(2x+1)2+1.letdecomposewinsideC(x)w(x)=1(2x+1i)(2x+1+i)=14(x+1i2)(x+1+i2)=14(x+12eiπ4)(x+12eiπ4)=ax+12eiπ4+bx+12eiπ4a=limx12eiπ4(x+12eiπ4)w(x)=1412(eiπ4eiπ4)=24(2i12)=14ib=limx12eiπ4(x+12eiπ4)w(x)=1412(eiπ4+eiπ4)=24(2i12)=28i=14iw(x)=14i{1x+12eiπ41x+12eiπ4}w(n1)=14i{(1)n1(n1)!(x+12eiπ4)n(1)n1(n1)!(x+12eiπ4)n}f(n)(x)=2w(n1)(x)=(1)n1(n1)!2i{1(x+12eiπ4)n1(x+12eiπ4)n}.
Commented by maxmathsup by imad last updated on 13/Jul/18
2) for x=0 we get   f^((n)) (0) = (((−1)^(n−1) (n−1)!)/(2i)) {   (1/(((1/( (√2)))e^(−((iπ)/4)) )^n )) −(1/(((1/( (√2)))e^((iπ)/4) )^n ))}  =(((−1)^(n−1) (n−1)!)/(2i)){ ((√2))^n  e^((inπ)/4)  −((√2))^n  e^(−((inπ)/4)) }  =((((√2))^n (−1)^(n−1) (n−1)!)/(2i)) (2i sin(((nπ)/4))) ⇒  f^((n)) (0) =(−1)^n (n−1)! ((√2))^n  sin(((nπ)/4)) .
2)forx=0wegetf(n)(0)=(1)n1(n1)!2i{1(12eiπ4)n1(12eiπ4)n}=(1)n1(n1)!2i{(2)neinπ4(2)neinπ4}=(2)n(1)n1(n1)!2i(2isin(nπ4))f(n)(0)=(1)n(n1)!(2)nsin(nπ4).
Commented by maxmathsup by imad last updated on 14/Jul/18
3) we have f(x)=Σ_(n=0) ^∞   ((f^((n)) (0))/(n!)) x^n  =(π/4) +Σ_(n=1) ^∞   ((f^((n)) (0))/(n!))x^n   f(x)=(π/4) +Σ_(n=1) ^∞    (((−1)^(n−1) (n−1)!((√2))^n )/(n!)) x^n   = (π/4) +Σ_(n=1) ^∞   (((−1)^(n−1) )/n) ((√2))^n sin(((nπ)/4)) x^n   .
3)wehavef(x)=n=0f(n)(0)n!xn=π4+n=1f(n)(0)n!xnf(x)=π4+n=1(1)n1(n1)!(2)nn!xn=π4+n=1(1)n1n(2)nsin(nπ4)xn.
Commented by maxmathsup by imad last updated on 14/Jul/18
4) ∫_0 ^1 f(x)dx = ∫_0 ^1  arctan(2x+1)dx  by parts u^′ =1 and v=arctan(2x+1)  ∫_0 ^1  arctan(2x+1)dx = [x arctan(2x+1)]_0 ^1  − ∫_0 ^1  x (2/(1+(2x+1)^2 ))dx  = arctan(3) − ∫_0 ^1      ((2x)/(4x^2  +4x +2)) dx  but  ∫_0 ^1      ((2x)/(4x^2  +4x +2))dx = ∫_0 ^1     (x/(2x^2  +2x +1))dx =(1/4) ∫_0 ^1   ((4x +2−2)/(2x^2  +2x +1))dx  = (1/4) ∫_0 ^1   ((4x+2)/(2x^2  +2x+1)) dx −(1/2) ∫_0 ^1     (dx/(2(x^2  +x +(1/2))))  =(1/4)[ln∣2x^2  +2x +1∣]_0 ^1   −(1/4) ∫_0 ^1    (dx/(x^2  +2(1/2)x +(1/4)+(1/4)))  =(1/4)ln(5) −(1/4) ∫_0 ^1       (dx/((x+(1/2))^2  +(1/4)))  ( ch .x+(1/2)=(1/2)t)  =(1/4)ln(5)  −(1/4) ∫_0 ^1       (1/((1/4)(1+t^2 ))) (dt/2) =((ln(5))/4) −(1/2) (π/4) =((ln(5))/4) −(π/8) ⇒  ∫_0 ^1 f(x)dx = arctan(3) −((ln(5))/4) +(π/8) .
4)01f(x)dx=01arctan(2x+1)dxbypartsu=1andv=arctan(2x+1)01arctan(2x+1)dx=[xarctan(2x+1)]0101x21+(2x+1)2dx=arctan(3)012x4x2+4x+2dxbut012x4x2+4x+2dx=01x2x2+2x+1dx=14014x+222x2+2x+1dx=14014x+22x2+2x+1dx1201dx2(x2+x+12)=14[ln2x2+2x+1]011401dxx2+212x+14+14=14ln(5)1401dx(x+12)2+14(ch.x+12=12t)=14ln(5)1401114(1+t2)dt2=ln(5)412π4=ln(5)4π801f(x)dx=arctan(3)ln(5)4+π8.
Commented by maxmathsup by imad last updated on 14/Jul/18
5) we have  ∫_0 ^1    ((arctan(2x+1))/(4x^2  +4x +2))dx = ∫_0 ^1    ((arctan(2x+1))/((2x+1)^2  +1)) and by parts  u^′  = (1/((2x+1)^2  +1)) and v=arctan(2x+1) we get  ∫_0 ^1    ((arctan(2x+1))/((2x+1)^2  +1)) dx = [ (1/2)arctan(2x+1).arctan(2x+1)]_0 ^1   −∫_0 ^1   (1/2) arctan(2x+1).(2/((2x+1)^2  +1)) dx  =(1/2) (arctan(3))^2  −(π^2 /(32)) −∫_0 ^1    ((arctan(2x+1))/((2x+1)^2  +1)) ⇒  ∫_0 ^1    ((arctan(2x+1))/((2x+1)^2  +1)) dx = (1/4) (arctan(3))^2  −(π^2 /(64)) .
5)wehave01arctan(2x+1)4x2+4x+2dx=01arctan(2x+1)(2x+1)2+1andbypartsu=1(2x+1)2+1andv=arctan(2x+1)weget01arctan(2x+1)(2x+1)2+1dx=[12arctan(2x+1).arctan(2x+1)]010112arctan(2x+1).2(2x+1)2+1dx=12(arctan(3))2π23201arctan(2x+1)(2x+1)2+101arctan(2x+1)(2x+1)2+1dx=14(arctan(3))2π264.

Leave a Reply

Your email address will not be published. Required fields are marked *