let-f-x-arctan-2x-1-x-1-calculate-f-n-x-and-f-n-0-2-developp-f-at-integr-serie- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 81431 by abdomathmax last updated on 13/Feb/20 letf(x)=arctan(2x)1+x1)calculatef(n)(x)andf(n)(0)2)developpfatintegrserie Commented by abdomathmax last updated on 20/Feb/20 1)wehavef(x)=arctan(2x)1+x⇒f(n)(x)=∑k=0nCnk(arctan(2x))(k)(11+x)(n−k)=arctan(2x)×(−1)n(x+1)n+1+∑k=1nCnk(arctan(2x))(k)×(−1)n−k(x+1)n−k+1wehave(arctan(2x))(1)=21+4x2⇒(arctan(2x))(k)=(21+4x2)(k−1)=12{1x2+14})k−1)=12{1(x−i2)(x+i2)}(k−1)=12i{1x−i2−1x+i2}(k−1)=12i{(−1)k−1(x−i2)k−(−1)k−1(x+i2)k}=(−1)k−12i{(x+i2)k−(x−i2)k(x2+14)k}=(−1)k−1×Im(x+i2)k(x2+14)k⇒f(n)(x)=(−1)narctan(2x)(x+1)n+(−1)n−1∑k=1nCnk×Im(x+i2)k(x2+14)k×1(x+1)n−k+1 Commented by abdomathmax last updated on 20/Feb/20 f(n)(0)=(−1)n−1∑k=1nCnksin(kπ2)2k(14)k=(−1)n−1∑k=1nCnk2ksin(kπ2)2)f(x)=∑n=0∞f(n)(0)n!xn=f(0)+∑n=1∞(−1)n−1×1n!{∑k=1nCnk2ksin(kπ2)}xn=∑n=1∞(−1)n−1n!∑k=1nn!k!(n−k)!2ksin(kπ2)xnf(x)=∑n=1∞(−1)n−1(∑k=1n2ksin(kπ2)k!(n−k)!)xn Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculate-lim-x-x-3-ln-1-e-x-2-Next Next post: Simplify-2-2-2-2-2-2-2- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.