Menu Close

let-f-x-arctan-2x-1-x-1-calculate-f-n-x-and-f-n-0-2-developp-f-at-integr-serie-




Question Number 81431 by abdomathmax last updated on 13/Feb/20
let f(x)=((arctan(2x))/(1+x))  1) calculate f^((n)) (x) and f^((n)) (0)  2) developp f at integr serie
letf(x)=arctan(2x)1+x1)calculatef(n)(x)andf(n)(0)2)developpfatintegrserie
Commented by abdomathmax last updated on 20/Feb/20
1) we have f(x)=((arctan(2x))/(1+x)) ⇒  f^((n)) (x)=Σ_(k=0) ^n  C_n ^k  (arctan(2x))^((k)) ((1/(1+x)))^((n−k))   =arctan(2x)×(((−1)^n )/((x+1)^(n+1) )) +Σ_(k=1) ^n  C_n ^k (arctan(2x))^((k)) ×(((−1)^(n−k) )/((x+1)^(n−k+1) ))  we have (arctan(2x))^((1)) =(2/(1+4x^2 )) ⇒  (arctan(2x))^((k))  =((2/(1+4x^2 )))^((k−1))   =(1/2){ (1/(x^2 +(1/4)))}^()k−1))  =(1/2){  (1/((x−(i/2))(x+(i/2))))}^((k−1))   =(1/(2i)){(1/(x−(i/2)))−(1/(x+(i/2)))}^((k−1))   =(1/(2i)){ (((−1)^(k−1) )/((x−(i/2))^k ))−(((−1)^(k−1) )/((x+(i/2))^k ))}   =(((−1)^(k−1) )/(2i)){(((x+(i/2))^k −(x−(i/2))^k )/((x^2  +(1/4))^k ))}  =(−1)^(k−1)  ×((Im(x+(i/2))^k )/((x^2  +(1/4))^k )) ⇒  f^((n)) (x)=(((−1)^n  arctan(2x))/((x+1)^n ))  +(−1)^(n−1) Σ_(k=1) ^n  C_n ^k     ×((Im(x+(i/2))^k )/((x^2  +(1/4))^k )) ×(1/((x+1)^(n−k+1) ))
1)wehavef(x)=arctan(2x)1+xf(n)(x)=k=0nCnk(arctan(2x))(k)(11+x)(nk)=arctan(2x)×(1)n(x+1)n+1+k=1nCnk(arctan(2x))(k)×(1)nk(x+1)nk+1wehave(arctan(2x))(1)=21+4x2(arctan(2x))(k)=(21+4x2)(k1)=12{1x2+14})k1)=12{1(xi2)(x+i2)}(k1)=12i{1xi21x+i2}(k1)=12i{(1)k1(xi2)k(1)k1(x+i2)k}=(1)k12i{(x+i2)k(xi2)k(x2+14)k}=(1)k1×Im(x+i2)k(x2+14)kf(n)(x)=(1)narctan(2x)(x+1)n+(1)n1k=1nCnk×Im(x+i2)k(x2+14)k×1(x+1)nk+1
Commented by abdomathmax last updated on 20/Feb/20
f^((n)) (0) =(−1)^(n−1)  Σ_(k=1) ^n  C_n ^k   ((sin(((kπ)/2)))/(2^k ((1/4))^k ))  =(−1)^(n−1)  Σ_(k=1) ^n  C_n ^k   2^k  sin(((kπ)/2))  2) f(x)=Σ_(n=0) ^∞  ((f^((n)) (0))/(n!)) x^n   =f(0) +Σ_(n=1) ^∞  (−1)^(n−1) ×(1/(n!)){Σ_(k=1) ^n  C_n ^k  2^k  sin(((kπ)/2))}x^n   =Σ_(n=1) ^∞  (((−1)^(n−1) )/(n!)) Σ_(k=1) ^n  ((n!)/(k!(n−k)!)) 2^k  sin(((kπ)/2)) x^n   f(x) =Σ_(n=1) ^∞  (−1)^(n−1) (Σ_(k=1) ^n  ((2^k  sin(((kπ)/2)))/(k!(n−k)!)))x^n
f(n)(0)=(1)n1k=1nCnksin(kπ2)2k(14)k=(1)n1k=1nCnk2ksin(kπ2)2)f(x)=n=0f(n)(0)n!xn=f(0)+n=1(1)n1×1n!{k=1nCnk2ksin(kπ2)}xn=n=1(1)n1n!k=1nn!k!(nk)!2ksin(kπ2)xnf(x)=n=1(1)n1(k=1n2ksin(kπ2)k!(nk)!)xn

Leave a Reply

Your email address will not be published. Required fields are marked *