Menu Close

let-f-x-arctan-2x-1-x-find-f-n-x-andf-n-1-




Question Number 83254 by mathmax by abdo last updated on 29/Feb/20
let f(x)=arctan(2x−(1/x))  find f^((n)) (x) andf^((n)) (1)
letf(x)=arctan(2x1x)findf(n)(x)andf(n)(1)
Commented by mathmax by abdo last updated on 02/Mar/20
we have f^′ (x)=((2+(1/x^2 ))/(1+(2x−(1/x))^2 )) =((2x^2  +1)/(x^2 {1+(((2x^2 −1)^2 )/x^2 )}))  =((2x^2  +1)/(x^2  +(2x^2 −1)^2 )) =((2x^2  +1)/(x^2  +4x^4 −4x^2  +1)) =((2x^2  +1)/(4x^4 −3x^2 +1))  4x^4 −3x^2  +1=0 →4t^2 −3t +1=0   (t=x^2 )  Δ=9−16 =−7 ⇒t_1 =((3+i(√7))/8)  and t_2 =((3−i(√7))/8) ⇒  f^′ (x)=((2x^2  +1)/(4(x^2 −t_1 )(x^2 −t_2 ))) =(1/(4(t_1 −t_2 )))((1/(x^2 −t_1 ))−(1/(x^2 −t_2 )))(2x^2  +1)  =(1/(i(√7))){ ((2x^2 +1)/(x^2 −t_1 ))−((2x^2  +1)/(x^2 −t_2 ))} =(1/(i(√7))){((2(x^2 −t_1 )+1+2t_1 )/(x^2 −t_1 ))−((2(x^2 −t_2 )+1+2t_2 )/(x^2 −t_2 ))}  =(1/(i(√7))){((2t_1 +1)/(x^2 −t_1 ))−((2t_2 +1)/(x^2 −t_2 ))}  =(1/(i(√7))){((2t_1 +1)/(2(√t_1 )))×((1/(x−(√t_1 )))−(1/(x+(√t_1 )))) −((2t_2 +1)/(2(√t_2 )))((1/(x−(√t_2 )))−(1/(x+(√t_2 ))))}⇒  f^((n)) (x) =((2t_1 +1)/(2i(√7)(√t_1 ))){  (((−1)^(n−1) (n−1)!)/((x−(√t_1 ))^n ))−(((−1)^(n−1) (n−1)!)/((x+(√t_1 ))^n ))}  −((2t_2 +1)/(2i(√7)(√t_2 ))){  (((−1)^(n−1) (n−1)!)/((x−(√t_2 ))^n ))−(((−1)^(n−1) (n−1)!)/((x+(√t_2 ))^n ))}  be continued..
wehavef(x)=2+1x21+(2x1x)2=2x2+1x2{1+(2x21)2x2}=2x2+1x2+(2x21)2=2x2+1x2+4x44x2+1=2x2+14x43x2+14x43x2+1=04t23t+1=0(t=x2)Δ=916=7t1=3+i78andt2=3i78f(x)=2x2+14(x2t1)(x2t2)=14(t1t2)(1x2t11x2t2)(2x2+1)=1i7{2x2+1x2t12x2+1x2t2}=1i7{2(x2t1)+1+2t1x2t12(x2t2)+1+2t2x2t2}=1i7{2t1+1x2t12t2+1x2t2}=1i7{2t1+12t1×(1xt11x+t1)2t2+12t2(1xt21x+t2)}f(n)(x)=2t1+12i7t1{(1)n1(n1)!(xt1)n(1)n1(n1)!(x+t1)n}2t2+12i7t2{(1)n1(n1)!(xt2)n(1)n1(n1)!(x+t2)n}becontinued..

Leave a Reply

Your email address will not be published. Required fields are marked *