Question Number 39699 by maxmathsup by imad last updated on 09/Jul/18

Commented by math khazana by abdo last updated on 10/Jul/18

Commented by maxmathsup by imad last updated on 13/Jul/18
![4) let integrate by parts u^′ =1 and v =arctan(2x^2 +1) ∫_0 ^1 f(x)dx = [x arctan(2x^2 +1)]_0 ^1 −∫_0 ^1 x ((4x)/(1+(2x^2 +1)^2 ))dx =arctan(3)−4 ∫_0 ^1 (x^2 /(1+(2x^2 +1)^2 ))dx changement x =(1/( (√2))) tanθ give ∫_0 ^1 (x^2 /(1+(2x^2 +1)^2 ))dx = ∫_0 ^(arctan((√2))) (1/2) ((tan^2 θ)/(1+(1+tan^2 θ)^2 )) (1/( (√2)))(1+tan^2 θ)dθ = (1/(2(√2))) ∫_0 ^(arctan((√2))) ((tan^2 θ(1+tan^2 θ))/(1+(1+tan^2 θ)^2 ))dθ =(1/(2(√2))) ∫_0 ^(arctan((√2))) ((((1/(cos^2 θ))−1)((1/(cos^2 θ))))/(1+ (1/(cos^4 θ))))dθ = (1/(2(√2))) ∫_0 ^(arctan((√2))) ((1−cos^2 θ)/(1+cos^4 θ)) dθ = (1/(2(√2))) ∫_0 ^(arctan((√2))) ((1−((1+cos(2θ))/2))/(1+(((1+cos(2θ))/2))^2 ))dθ = (1/(2(√2))) ∫_0 ^(arctan((√2))) ((1−cos(2θ))/(4+(1+cos(2θ))^2 )) 2dθ = (1/( (√2))) ∫_0 ^(arctan((√2))) ((1−cos(2θ))/(4 +1 +2cos(2θ) +((1+cos(4θ))/4))) dθ =(4/( (√2))) ∫_0 ^(arctan((√2))) ((1−cos(2θ))/(21 +8cos(2θ) +cos(4θ)))dθ ...be continued...](https://www.tinkutara.com/question/Q39886.png)
Commented by maxmathsup by imad last updated on 13/Jul/18

Commented by maxmathsup by imad last updated on 13/Jul/18
![5) we have f^′ (x)= ((4x)/(1+(2x^2 +1)^2 )) = ((4x)/(1+4x^4 +4x^2 +1)) = ((4x)/(4x^4 +4x^2 +2)) = ((2x)/(2x^4 +2x^2 +1)) ⇒(x/(2x^4 +2x^2 +1)) =(1/2)f^′ (x) ⇒let integrate by parts ∫_0 ^1 ((x arctan(2x^2 +1))/(2x^4 +2x^2 +1)) dx =(1/2) ∫_0 ^1 f.f^′ dx=[(1/4) f^2 (x)]_0 ^1 =(1/4){ f^2 (1) −f^((2)) (0)} =(1/4){ arctan^2 (3) −(π^2 /(16))} .](https://www.tinkutara.com/question/Q39887.png)
Commented by maxmathsup by imad last updated on 13/Jul/18
