Menu Close

let-f-x-arctan-2x-2-1-1-calculate-f-n-x-2-determine-f-n-n-3-developp-f-at-integr-serie-4-calculate-0-1-f-x-dx-5-calculate-0-1-x-arctan-2x-2-1-2x-2-2x-1-dx-




Question Number 39699 by maxmathsup by imad last updated on 09/Jul/18
let f(x)= arctan(2x^2  +1)  1) calculate f^((n)) (x)  2) determine f^((n)) (n)  3)developp f  at integr serie  4) calculate ∫_0 ^1 f(x)dx  5) calculate  ∫_0 ^1  ((x arctan(2x^2  +1))/(2x^2  +2x +1))dx
letf(x)=arctan(2x2+1)1)calculatef(n)(x)2)determinef(n)(n)3)developpfatintegrserie4)calculate01f(x)dx5)calculate01xarctan(2x2+1)2x2+2x+1dx
Commented by math khazana by abdo last updated on 10/Jul/18
2) determine f^((n)) (0)
2)determinef(n)(0)
Commented by maxmathsup by imad last updated on 13/Jul/18
4) let integrate by parts u^′ =1 and v =arctan(2x^2  +1)  ∫_0 ^1 f(x)dx = [x arctan(2x^2  +1)]_0 ^1   −∫_0 ^1  x  ((4x)/(1+(2x^2 +1)^2 ))dx  =arctan(3)−4 ∫_0 ^1     (x^2 /(1+(2x^2  +1)^2 ))dx  changement x =(1/( (√2))) tanθ  give  ∫_0 ^1     (x^2 /(1+(2x^2  +1)^2 ))dx = ∫_0 ^(arctan((√2)))      (1/2) ((tan^2 θ)/(1+(1+tan^2 θ)^2 ))  (1/( (√2)))(1+tan^2 θ)dθ  = (1/(2(√2))) ∫_0 ^(arctan((√2)))   ((tan^2 θ(1+tan^2 θ))/(1+(1+tan^2 θ)^2 ))dθ  =(1/(2(√2))) ∫_0 ^(arctan((√2)))  ((((1/(cos^2 θ))−1)((1/(cos^2 θ))))/(1+ (1/(cos^4 θ))))dθ  = (1/(2(√2))) ∫_0 ^(arctan((√2)))   ((1−cos^2 θ)/(1+cos^4 θ)) dθ  = (1/(2(√2))) ∫_0 ^(arctan((√2)))     ((1−((1+cos(2θ))/2))/(1+(((1+cos(2θ))/2))^2 ))dθ  = (1/(2(√2))) ∫_0 ^(arctan((√2)))     ((1−cos(2θ))/(4+(1+cos(2θ))^2 )) 2dθ  = (1/( (√2))) ∫_0 ^(arctan((√2)))    ((1−cos(2θ))/(4 +1 +2cos(2θ)  +((1+cos(4θ))/4))) dθ  =(4/( (√2)))  ∫_0 ^(arctan((√2)))       ((1−cos(2θ))/(21 +8cos(2θ) +cos(4θ)))dθ  ...be continued...
4)letintegratebypartsu=1andv=arctan(2x2+1)01f(x)dx=[xarctan(2x2+1)]0101x4x1+(2x2+1)2dx=arctan(3)401x21+(2x2+1)2dxchangementx=12tanθgive01x21+(2x2+1)2dx=0arctan(2)12tan2θ1+(1+tan2θ)212(1+tan2θ)dθ=1220arctan(2)tan2θ(1+tan2θ)1+(1+tan2θ)2dθ=1220arctan(2)(1cos2θ1)(1cos2θ)1+1cos4θdθ=1220arctan(2)1cos2θ1+cos4θdθ=1220arctan(2)11+cos(2θ)21+(1+cos(2θ)2)2dθ=1220arctan(2)1cos(2θ)4+(1+cos(2θ))22dθ=120arctan(2)1cos(2θ)4+1+2cos(2θ)+1+cos(4θ)4dθ=420arctan(2)1cos(2θ)21+8cos(2θ)+cos(4θ)dθbecontinued
Commented by maxmathsup by imad last updated on 13/Jul/18
1) we have f^′ (x)= ((4x)/(1+(2x^2  +1)^2 )) ⇒f^((n)) (x)=4{ (x/(1+(2x^2  +1)^2 ))}^((n−1))   let w(x)= (x/(1+(2x^2  +1)^2 )) let  decompose w(x)  w(x) =  (x/((2x^2  +1)^2  −i^2 )) = (x/((2x^2  +1−i)(2x^2  +1+i)))  = (x/(4( x^2  +((1−i)/2))(x^2  +((1+i)/2))))  = (x/(4( x^2  +(1/( (√2)))e^(−((iπ)/4)) )(x^2  +(1/( (√2)))e^((iπ)/4) )))  = (x/(4(x−(i/( (√(√2)) ))e^(−((iπ)/8)) )(x+ (i/( (√(√2)))) e^(−((iπ)/8)) )(x−(i/( (√(√2)))) e^((iπ)/8) )(x+(1/( (√(√2)))) e^((iπ)/8) )))  let  z_0 =(i/( (√(√2)))) e^((iπ)/8)   ,  z_1  =−(i/( (√(√2)))) e^((iπ)/8)    , z_2 = (i/( (√(√2)))) e^(−((iπ)/8))   ,  z_3  = −(i/( (√(√2)))) e^(−((iπ)/8))  ⇒  f^′ (x) =4w(x) =  (a/(x−z_0 )) +(b/(x−z_1 )) +(c/(x−z_2 )) +(d/(x−z_3 )) =(x/((x−z_0 )(x−z_1 )(x−z_2 )(x−z_3 )))  we have   a =  (z_0 /((z_0 −z_1 )(z_0 ^2  + (1/( (√2)))e^(−((iπ)/4)) )))  b = (z_1 /((z_1 −z_0 )(z_1 ^2  +(1/( (√2)))e^(−((iπ)/4)) )))  c =  (z_2 /((z_2 −z_3 )(z_2 ^2  +(1/( (√2)))e^((iπ)/4) )))  d =  (z_3 /((z_3 −z_2 )(z_3 ^2   +(1/( (√2)))e^((iπ)/4) )))  and    f^((n)) (x) = a (((−1)^(n−1) (n−1)!)/((x−z_0 )^n ))  +b (((−1)^(n−1) (n−1)!)/((x−z_1 )^n )) + c (((−1)^(n−1) (n−1)!)/((x−z_2 )^n ))  +d (((−1)^(n−1) (n−1)!)/((x−z_3 )^n ))  2) f^((n)) (0) = (−1)^(n−1) (n−1)!{    (a/((−z_0 )^n )) + (b/((−z_1 )^n )) + (c/((−z_2 )^n )) +(d/((−z_3 )^n ))}  =−(n−1)!{   (a/z_0 ^n )  +(b/z_1 ^n ) + (c/z_2 ^n ) +(d/z_3 ^n )}  3) we have f(x) =Σ_(n=0) ^∞    ((f^((n)) (0))/(n!)) x^n   =(π/4) −Σ_(n=1) ^∞    (1/n){ (a/z_0 ^n ) +(b/z_1 ^n ) + (c/z_2 ^n ) +(d/z_3 ^n )}x^n
1)wehavef(x)=4x1+(2x2+1)2f(n)(x)=4{x1+(2x2+1)2}(n1)letw(x)=x1+(2x2+1)2letdecomposew(x)w(x)=x(2x2+1)2i2=x(2x2+1i)(2x2+1+i)=x4(x2+1i2)(x2+1+i2)=x4(x2+12eiπ4)(x2+12eiπ4)=x4(xi2eiπ8)(x+i2eiπ8)(xi2eiπ8)(x+12eiπ8)letz0=i2eiπ8,z1=i2eiπ8,z2=i2eiπ8,z3=i2eiπ8f(x)=4w(x)=axz0+bxz1+cxz2+dxz3=x(xz0)(xz1)(xz2)(xz3)wehavea=z0(z0z1)(z02+12eiπ4)b=z1(z1z0)(z12+12eiπ4)c=z2(z2z3)(z22+12eiπ4)d=z3(z3z2)(z32+12eiπ4)andf(n)(x)=a(1)n1(n1)!(xz0)n+b(1)n1(n1)!(xz1)n+c(1)n1(n1)!(xz2)n+d(1)n1(n1)!(xz3)n2)f(n)(0)=(1)n1(n1)!{a(z0)n+b(z1)n+c(z2)n+d(z3)n}=(n1)!{az0n+bz1n+cz2n+dz3n}3)wehavef(x)=n=0f(n)(0)n!xn=π4n=11n{az0n+bz1n+cz2n+dz3n}xn
Commented by maxmathsup by imad last updated on 13/Jul/18
5) we have f^′ (x)= ((4x)/(1+(2x^2  +1)^2 )) = ((4x)/(1+4x^4  +4x^2  +1)) = ((4x)/(4x^4  +4x^2  +2))  = ((2x)/(2x^4  +2x^2  +1)) ⇒(x/(2x^4  +2x^2  +1)) =(1/2)f^′ (x) ⇒let integrate by parts  ∫_0 ^1    ((x arctan(2x^2  +1))/(2x^4  +2x^2  +1)) dx =(1/2) ∫_0 ^1  f.f^′ dx=[(1/4) f^2 (x)]_0 ^1   =(1/4){ f^2 (1) −f^((2)) (0)} =(1/4){ arctan^2 (3) −(π^2 /(16))} .
5)wehavef(x)=4x1+(2x2+1)2=4x1+4x4+4x2+1=4x4x4+4x2+2=2x2x4+2x2+1x2x4+2x2+1=12f(x)letintegratebyparts01xarctan(2x2+1)2x4+2x2+1dx=1201f.fdx=[14f2(x)]01=14{f2(1)f(2)(0)}=14{arctan2(3)π216}.
Commented by maxmathsup by imad last updated on 13/Jul/18
5) the Q is[find  ∫_0 ^1    ((x arctan(2x^2  +1))/(2x^4  +2x^2  +1)) dx .
5)theQis[find01xarctan(2x2+1)2x4+2x2+1dx.

Leave a Reply

Your email address will not be published. Required fields are marked *