let-f-x-arctan-2x-ln-1-x-2-1-calculate-f-x-2-determine-f-n-x-and-f-n-0-3-developp-f-at-integr-serie- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 60502 by prof Abdo imad last updated on 21/May/19 letf(x)=arctan(2x)ln(1−x2)1)calculatef′(x)2)determinef(n)(x)andf(n)(0)3)developpfatintegrserie. Commented by maxmathsup by imad last updated on 31/May/19 1)wehavef(x)=arctan(2x)ln(1−x2)⇒f′(x)=21+4x2ln(1−x2)+arctan(2x)−2x1−x2=2ln(1−x2)1+4x2−2xarctan(2x)1−x22)leibnizformulaegivef(n)(x)=∑k=0nCnk(arctan(2x))(k)(ln(1−x2))(n−k)=arctan(x)(ln(1−x2))(n)+∑k=1nCnk(arctan(2x))(k){ln(1−x2)}(n−k)letw(x)=arctan(2x)⇒w′(x)=21+4x2⇒w(k)(x)=2(14x2+1)(k−1)but14x2+1=14(x2+14)=14(x−i2)(x+i2)=14i{1x−i2−1x+i2}⇒w(k)(x)=12i{(1x−i2)(k−1)−(1x+i2)(k−1)}=12i{(−1)k−1(k−1)!(x−i2)k−(−1)k−1(k−1)!(x+i2)k}=(−1)k−1(k−1)!2i{(x+i2)k−(x−i2)k(x2+14)k}=(−1)k−1(k−1)!(x2+14)kIm((x+i2)k)(x+i2)k=∑p=0kCkp(i2)pxk−p=∑p=2q(….)+∑p=2q+1=∑q=0[k2]Ck2q(−1)q22qxk−2q+∑q=0[k−12]Ck2q+1i(−1)q22q+1xk−2q−1⇒Im{(x+i2)k}=∑q=0[k−12]Ck2q+1(−1)q22q+1xk−2q−1⇒w(k)(x)=(−1)k−1(k−1)!(x2+14)k{∑q=0[k−12]Ck2q+1(−1)q22q+1xk−2q−1} Commented by maxmathsup by imad last updated on 31/May/19 letv(x)=ln(1−x2)letdeterminev(n)(x)wehavev′(x)=−2x1−x2=(11+x−11−x)⇒v(n)(x)=(1x+1)(n−1)+(1x−1)(n−1)=(−1)n−1(n−1)!(x+1)n+(−1)n−1(n−1)!(x−1)n=(−1)n−1(n−1)!(x2−1)n{(x+1)n+(x−1)n}but(x+1)n+(x−1)n=∑k=0nCnk1kxn−k+∑k=0nCnk(−1)kxn−k=∑k=0nCnk(1+(−1)k)xn−k=∑p=0[n2]Cn2p2xn−2p=2∑p=0[n2]Cn2pxn−2p⇒v(n)(x)=2(−1)n−1(n−1)!(x2−1)n∑p=0[n2]Cn2pxn−2p⇒v(n−k)=2(−1)n−k−1(n−k−1)!(x2−1)n−k∑p=0[n−k2]Cn−k2pxn−k−2p⇒f(n)(x)=arctan(2x)w(n)(x)+∑k=1nCnkw(k)(x)v(n−k)(x) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: let-A-1-1-1-1-1-calculate-A-n-2-determine-e-A-and-e-A-Next Next post: Let-A-2-2-and-f-R-R-R-such-as-f-x-y-A-x-y-E-x-E-y-where-A-is-the-caracteristic-function-of-A-Prove-that-f-is-a-density-of-a-probability-P- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.