Menu Close

let-f-x-arctan-2x-ln-1-x-2-1-calculate-f-x-2-determine-f-n-x-and-f-n-0-3-developp-f-at-integr-serie-




Question Number 60502 by prof Abdo imad last updated on 21/May/19
let f(x) =arctan(2x) ln (1−x^2 )  1) calculate f^′ (x)  2)  determine f^((n)) (x) and f^((n)) (0)  3) developp  f at integr serie .
letf(x)=arctan(2x)ln(1x2)1)calculatef(x)2)determinef(n)(x)andf(n)(0)3)developpfatintegrserie.
Commented by maxmathsup by imad last updated on 31/May/19
1) we have f(x)=arctan(2x)ln(1−x^2 ) ⇒  f^′ (x) =(2/(1+4x^2 ))ln(1−x^2 ) +arctan(2x)((−2x)/(1−x^2 ))  =((2ln(1−x^2 ))/(1+4x^2 )) −((2x arctan(2x))/(1−x^2 ))  2) leibniz formulae give f^((n)) (x) =Σ_(k=0) ^n  C_n ^k  (arctan(2x))^((k)) (ln(1−x^2 ))^((n−k))   =arctan(x)(ln(1−x^2 ))^((n))  +Σ_(k=1) ^n  C_n ^k (arctan(2x))^((k)) {ln(1−x^2 )}^((n−k))   let w(x) =arctan(2x) ⇒w^′ (x) =(2/(1+4x^2 )) ⇒  w^((k)) (x) =2 ((1/(4x^2  +1)))^((k−1))  but  (1/(4x^2  +1)) =(1/(4(x^2  +(1/4)))) =(1/(4(x−(i/2))(x+(i/2))))  =(1/(4i)){(1/(x−(i/2))) −(1/(x+(i/2)))} ⇒w^((k)) (x) =(1/(2i)){ ((1/(x−(i/2))))^((k−1)) −((1/(x+(i/2))))^((k−1)) }  =(1/(2i)){   (((−1)^(k−1) (k−1)!)/((x−(i/2))^k )) −(((−1)^(k−1) (k−1)!)/((x+(i/2))^k ))}  =(((−1)^(k−1) (k−1)!)/(2i)){(((x+(i/2))^k −(x−(i/2))^k )/((x^2  +(1/4))^k ))}  =(((−1)^(k−1) (k−1)!)/((x^2  +(1/(4 )))^k )) Im( (x+(i/2))^k )  (x+(i/2))^k  =Σ_(p=0) ^k   C_k ^p ((i/2))^p  x^(k−p)   =Σ_(p=2q) (....)+Σ_(p=2q+1)   =Σ_(q=0) ^([(k/2)])      C_k ^(2q)   (((−1)^q )/2^(2q) ) x^(k−2q)   +Σ_(q=0) ^([((k−1)/2)])  C_k ^(2q+1)  ((i(−1)^q )/2^(2q+1) ) x^(k−2q−1)  ⇒  Im{(x+(i/2))^k } =Σ_(q=0) ^([((k−1)/2)])  C_k ^(2q+1) (((−1)^q )/2^(2q+1) ) x^(k−2q−1)  ⇒  w^((k)) (x) =(((−1)^(k−1) (k−1)!)/((x^2  +(1/4))^k )){ Σ_(q=0) ^([((k−1)/2)])  C_k ^(2q+1)  (((−1)^q )/2^(2q+1) ) x^(k−2q−1) }
1)wehavef(x)=arctan(2x)ln(1x2)f(x)=21+4x2ln(1x2)+arctan(2x)2x1x2=2ln(1x2)1+4x22xarctan(2x)1x22)leibnizformulaegivef(n)(x)=k=0nCnk(arctan(2x))(k)(ln(1x2))(nk)=arctan(x)(ln(1x2))(n)+k=1nCnk(arctan(2x))(k){ln(1x2)}(nk)letw(x)=arctan(2x)w(x)=21+4x2w(k)(x)=2(14x2+1)(k1)but14x2+1=14(x2+14)=14(xi2)(x+i2)=14i{1xi21x+i2}w(k)(x)=12i{(1xi2)(k1)(1x+i2)(k1)}=12i{(1)k1(k1)!(xi2)k(1)k1(k1)!(x+i2)k}=(1)k1(k1)!2i{(x+i2)k(xi2)k(x2+14)k}=(1)k1(k1)!(x2+14)kIm((x+i2)k)(x+i2)k=p=0kCkp(i2)pxkp=p=2q(.)+p=2q+1=q=0[k2]Ck2q(1)q22qxk2q+q=0[k12]Ck2q+1i(1)q22q+1xk2q1Im{(x+i2)k}=q=0[k12]Ck2q+1(1)q22q+1xk2q1w(k)(x)=(1)k1(k1)!(x2+14)k{q=0[k12]Ck2q+1(1)q22q+1xk2q1}
Commented by maxmathsup by imad last updated on 31/May/19
let v(x) =ln(1−x^2 )   let determine v^((n)) (x)  we have v^′ (x) =((−2x)/(1−x^2 )) =((1/(1+x)) −(1/(1−x))) ⇒  v^((n)) (x) =((1/(x+1)))^((n−1)) +((1/(x−1)))^((n−1))  =(((−1)^(n−1) (n−1)!)/((x+1)^n )) +(((−1)^(n−1) (n−1)!)/((x−1)^n ))  =(((−1)^(n−1) (n−1)!)/((x^2 −1)^n )){ (x+1)^n  +(x−1)^n }  but  (x+1)^n  +(x−1)^n  =Σ_(k=0) ^n  C_n ^k 1^k  x^(n−k)   +Σ_(k=0) ^n  C_n ^k (−1)^k  x^(n−k)   =Σ_(k=0) ^n   C_n ^k (1+(−1)^k )x^(n−k)   =Σ_(p=0) ^([(n/2)])  C_n ^(2p)  2 x^(n−2p)   =2 Σ_(p=0) ^([(n/2)])   C_n ^(2p)  x^(n−2p)  ⇒  v^((n)) (x) =((2(−1)^(n−1) (n−1)!)/((x^2 −1)^n )) Σ_(p=0) ^([(n/2)])  C_n ^(2p)  x^(n−2p)  ⇒  v^((n−k))   =((2(−1)^(n−k−1) (n−k−1)!)/((x^2 −1)^(n−k) )) Σ_(p=0) ^([((n−k)/2)])   C_(n−k) ^(2p)  x^(n−k−2p)   ⇒f^((n)) (x)=arctan(2x)w^((n)) (x) +Σ_(k=1) ^n  C_n ^k  w^((k)) (x) v^((n−k)) (x)
letv(x)=ln(1x2)letdeterminev(n)(x)wehavev(x)=2x1x2=(11+x11x)v(n)(x)=(1x+1)(n1)+(1x1)(n1)=(1)n1(n1)!(x+1)n+(1)n1(n1)!(x1)n=(1)n1(n1)!(x21)n{(x+1)n+(x1)n}but(x+1)n+(x1)n=k=0nCnk1kxnk+k=0nCnk(1)kxnk=k=0nCnk(1+(1)k)xnk=p=0[n2]Cn2p2xn2p=2p=0[n2]Cn2pxn2pv(n)(x)=2(1)n1(n1)!(x21)np=0[n2]Cn2pxn2pv(nk)=2(1)nk1(nk1)!(x21)nkp=0[nk2]Cnk2pxnk2pf(n)(x)=arctan(2x)w(n)(x)+k=1nCnkw(k)(x)v(nk)(x)

Leave a Reply

Your email address will not be published. Required fields are marked *