Menu Close

let-f-x-arctan-2x-x-3-1-calculate-f-n-x-snd-f-n-0-2-developp-f-at-integr-serie-




Question Number 98188 by abdomathmax last updated on 12/Jun/20
let f(x) =((arctan(2x))/(x+3))  1) calculate f^((n)) (x) snd f^((n)) (0)  2) developp f at integr serie
letf(x)=arctan(2x)x+31)calculatef(n)(x)sndf(n)(0)2)developpfatintegrserie
Answered by mathmax by abdo last updated on 12/Jun/20
1) we have f^((n)) (x) =Σ_(k=0) ^n  C_n ^k  (arctan(2x))^((k)) ×((1/(x+3)))^((n−k))   =arctan(2x)×(((−1)^n n!)/((x+3)^(n+1) )) +Σ_(k=1) ^n  C_n ^k  (arctan(2x))^((k)) ×(((−1)^(n−k)  (n−k)!)/((x+3)^(n−k+1) ))  let determine (arctan(2x))^((k))   we have  (arctan(2x))^((1))  =(2/(1+4x^2 )) =(2/(4(x^2  +(1/4)))) =(1/(2(x−(i/2))(x+(i/2))))  =(1/(2i))((1/(x−(i/2)))−(1/(x+(i/2)))) ⇒(arctan(2x))^((k))  =(1/(2i)){ ((1/(x−(i/2))))^((k−1)) −((1/(x+(i/2))))^(k−1) }  =(1/(2i)){ (((−1)^(k−1) (k−1)!)/((x−(i/2))^k ))−(((−1)^(k−1) (k−1)!)/((x+(i/2))^k ))}  =(((−1)^(k−1) (k−1)!)/(2i)){ ((2i Im(x+(i/2))^k )/((x^2 +(1/4))^k ))} =(((−1)^(k−1) (k−1)! Im(x+(i/2))^k )/((x^2  +(1/4))^k )) ⇒  f^((n)) (x) =(((−1)^n n!)/((x+3)^(n+1) )) arctan(2x)  +Σ_(k=1) ^n  (−1)^(n−k)  (n−k)!C_n ^k   ×(((−1)^(k−1) (k−1)! Im(x+(i/2))^k )/((x^2  +(1/4))^k (x+3)^(n−k+1) ))  =(((−1)^n  n!)/((x+3)^(n+1) )) arctan(2x) +Σ_(k=1) ^n  (−1)^(n−1) (n−k)!((n!)/(k!(n−k)!))(k−1)! ×((Im(x+(i/2))^k )/((x^2  +(1/4))^k (x+3)^(n−k+1) )) ⇒  f^((n)) (x)=(((−1)^n n!)/((x+3)^(n+1) )) arctan(2x) +Σ_(k=1) ^n  (−1)^(n−1) ((n!)/k)×((Im(x+(i/2))^k )/((x^2  +(1/4))^k (x+3)^(n−k+1) ))
1)wehavef(n)(x)=k=0nCnk(arctan(2x))(k)×(1x+3)(nk)=arctan(2x)×(1)nn!(x+3)n+1+k=1nCnk(arctan(2x))(k)×(1)nk(nk)!(x+3)nk+1letdetermine(arctan(2x))(k)wehave(arctan(2x))(1)=21+4x2=24(x2+14)=12(xi2)(x+i2)=12i(1xi21x+i2)(arctan(2x))(k)=12i{(1xi2)(k1)(1x+i2)k1}=12i{(1)k1(k1)!(xi2)k(1)k1(k1)!(x+i2)k}=(1)k1(k1)!2i{2iIm(x+i2)k(x2+14)k}=(1)k1(k1)!Im(x+i2)k(x2+14)kf(n)(x)=(1)nn!(x+3)n+1arctan(2x)+k=1n(1)nk(nk)!Cnk×(1)k1(k1)!Im(x+i2)k(x2+14)k(x+3)nk+1=(1)nn!(x+3)n+1arctan(2x)+k=1n(1)n1(nk)!n!k!(nk)!(k1)!×Im(x+i2)k(x2+14)k(x+3)nk+1f(n)(x)=(1)nn!(x+3)n+1arctan(2x)+k=1n(1)n1n!k×Im(x+i2)k(x2+14)k(x+3)nk+1
Commented by mathmax by abdo last updated on 13/Jun/20
f^((n)) (0) =Σ_(k=1) ^n  (((−1)^(n−1) n!)/k) ×((Im((i/2))^k )/(((1/4))^k .3^(n−k+1) ))  =Σ_(k=1) ^n  (((−1)^(n−1) n!)/k).(4^k /3^(n−k+1) )×(1/2^k ) sin(((kπ)/2))   =Σ_(k=1) ^n  (((−1)^(n−1) n!)/(k .3^(n−k+1) )).2^k  sin(((kπ)/2))  2) f(x) =Σ_(n=0) ^∞  ((f^((n)) (0))/(n!)) x^n  =f(0) +Σ_(n=1) ^∞ (−1)^(n−1)  (Σ_(k=1) ^n  (2^k /(k.3^(n−k+1) )) sin(((kπ)/2)))x^n   =Σ_(n=1) ^∞  (((−1)^(n−1) )/3^n )(Σ_(k=1) ^n ((2^k .3^(k−1) )/k) sin(((kπ)/2)))x^n
f(n)(0)=k=1n(1)n1n!k×Im(i2)k(14)k.3nk+1=k=1n(1)n1n!k.4k3nk+1×12ksin(kπ2)=k=1n(1)n1n!k.3nk+1.2ksin(kπ2)2)f(x)=n=0f(n)(0)n!xn=f(0)+n=1(1)n1(k=1n2kk.3nk+1sin(kπ2))xn=n=1(1)n13n(k=1n2k.3k1ksin(kπ2))xn

Leave a Reply

Your email address will not be published. Required fields are marked *