let-f-x-arctan-2x-x-3-1-calculate-f-n-x-snd-f-n-0-2-developp-f-at-integr-serie- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 98188 by abdomathmax last updated on 12/Jun/20 letf(x)=arctan(2x)x+31)calculatef(n)(x)sndf(n)(0)2)developpfatintegrserie Answered by mathmax by abdo last updated on 12/Jun/20 1)wehavef(n)(x)=∑k=0nCnk(arctan(2x))(k)×(1x+3)(n−k)=arctan(2x)×(−1)nn!(x+3)n+1+∑k=1nCnk(arctan(2x))(k)×(−1)n−k(n−k)!(x+3)n−k+1letdetermine(arctan(2x))(k)wehave(arctan(2x))(1)=21+4x2=24(x2+14)=12(x−i2)(x+i2)=12i(1x−i2−1x+i2)⇒(arctan(2x))(k)=12i{(1x−i2)(k−1)−(1x+i2)k−1}=12i{(−1)k−1(k−1)!(x−i2)k−(−1)k−1(k−1)!(x+i2)k}=(−1)k−1(k−1)!2i{2iIm(x+i2)k(x2+14)k}=(−1)k−1(k−1)!Im(x+i2)k(x2+14)k⇒f(n)(x)=(−1)nn!(x+3)n+1arctan(2x)+∑k=1n(−1)n−k(n−k)!Cnk×(−1)k−1(k−1)!Im(x+i2)k(x2+14)k(x+3)n−k+1=(−1)nn!(x+3)n+1arctan(2x)+∑k=1n(−1)n−1(n−k)!n!k!(n−k)!(k−1)!×Im(x+i2)k(x2+14)k(x+3)n−k+1⇒f(n)(x)=(−1)nn!(x+3)n+1arctan(2x)+∑k=1n(−1)n−1n!k×Im(x+i2)k(x2+14)k(x+3)n−k+1 Commented by mathmax by abdo last updated on 13/Jun/20 f(n)(0)=∑k=1n(−1)n−1n!k×Im(i2)k(14)k.3n−k+1=∑k=1n(−1)n−1n!k.4k3n−k+1×12ksin(kπ2)=∑k=1n(−1)n−1n!k.3n−k+1.2ksin(kπ2)2)f(x)=∑n=0∞f(n)(0)n!xn=f(0)+∑n=1∞(−1)n−1(∑k=1n2kk.3n−k+1sin(kπ2))xn=∑n=1∞(−1)n−13n(∑k=1n2k.3k−1ksin(kπ2))xn Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: solve-xy-3-x-2-y-2-x-3-y-1-x-4-y-e-2x-Next Next post: for-what-value-of-x-0-lt-x-lt-2-4cosec-2-x-9-cotx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.