Menu Close

let-f-x-arctan-3-x-1-calculste-f-n-x-and-f-n-1-2-developp-f-at-integr-seri-at-point-x-0-1-




Question Number 98722 by mathmax by abdo last updated on 15/Jun/20
let f(x) =arctan((3/x))  1) calculste f^((n)) (x) and f^((n)) (1)  2) developp f at integr seri at point x_0 =1
letf(x)=arctan(3x)1)calculstef(n)(x)andf(n)(1)2)developpfatintegrseriatpointx0=1
Answered by MWSuSon last updated on 16/Jun/20
y=arctan((3/x))  y′=((−3)/((x^2 +9)))=(1/(2i))[(1/(x+3i))−(1/(x−3i))]  y^(n+1) =(1/(2i))[n!(−1)^n (x+3i)^(−(n+1)) −n!(−1)^n (x−3i)^(−(n+1)) ]  y^n =(1/(2i))[(n−1)!(−1)^(n−1) (x+3i)^(−n) −(n−1)!(−1)^(n−1) (x−3i)^(−n) ]  can be further simplified...  let x=rcosθ and 3=rsinθ  y^n =(1/(2i))(n−1)!(−1)^(n−1) [(rcosθ+irsinθ)^(−n) −(rcosθ−irsinθ)^(−n) ]  y^n =(1/(2i))(n−1)!(−1)^(n−1) r^(−n) [cosnθ−isinnθ−cosnθ−isinnθ]  y^n =−(n−1)!(−1)^(n−1) r^(−n) ×sinnθ  y^n =(n−1)!(−1)^n r^(−n) sinnθ  [r=(√(x^2 +9))]  [θ = arctan((3/x))]  2) y^n (1) = (n−1)!(−1)^n ((√(10)))^(−n) ×sinn(arctan(3))
y=arctan(3x)y=3(x2+9)=12i[1x+3i1x3i]yn+1=12i[n!(1)n(x+3i)(n+1)n!(1)n(x3i)(n+1)]yn=12i[(n1)!(1)n1(x+3i)n(n1)!(1)n1(x3i)n]canbefurthersimplifiedletx=rcosθand3=rsinθyn=12i(n1)!(1)n1[(rcosθ+irsinθ)n(rcosθirsinθ)n]yn=12i(n1)!(1)n1rn[cosnθisinnθcosnθisinnθ]yn=(n1)!(1)n1rn×sinnθyn=(n1)!(1)nrnsinnθ[r=x2+9][θ=arctan(3x)]2)yn(1)=(n1)!(1)n(10)n×sinn(arctan(3))
Answered by MWSuSon last updated on 15/Jun/20
i don′t understand what your number 2 mean,  sir please retype.
idontunderstandwhatyournumber2mean,sirpleaseretype.
Commented by mathmax by abdo last updated on 15/Jun/20
taylor serie at x_0 =1
taylorserieatx0=1
Commented by MWSuSon last updated on 15/Jun/20
Taylor at x_o =1 =Σ_(n=0) ^∞ f^n (1)(x−1)^n   y=arctan((3/x))  y(x=1)=arctan(3)  y^′ =−(3/(x^2 +9))  y^′ (x=1)=−(3/(10))  y′′=((6x)/((x^2 +9)^2 ))  y^(′′) =(6/(100))=(3/(50))  ....  ....  arctan((3/x))_(x=1) =arctan(3)−((3(x−1))/(10))+((3(x−1)^2 )/(100))+...
Tayloratxo=1=n=0fn(1)(x1)ny=arctan(3x)y(x=1)=arctan(3)y=3x2+9y(x=1)=310y=6x(x2+9)2y=6100=350..arctan(3x)x=1=arctan(3)3(x1)10+3(x1)2100+
Answered by mathmax by abdo last updated on 15/Jun/20
1) f(x) =arctan((3/x)) ⇒f^′ (x) =((−3)/(x^2 (1+(9/x^2 )))) =((−3)/(x^2  +9))  =((−3)/((x−3i)(x+3i))) =−3((1/(x−3i))−(1/(x+3i)))×(1/(6i)) =−(1/(2i))((1/(x−3i))−(1/(x+3i))) ⇒  f^((n)) (x) =−(1/(2i)){ ((1/(x−3i)))^((n−1)) −((1/(x+3i)))^((n−1)) }   (n≥1)  f^((n)) (x) =(i/2){ (((−1)^(n−1) (n−1)!)/((x−3i)^n ))−(((−1)^(n−1) (n−1)!)/((x+3i)^n ))}  =(i/2)(−1)^(n−1) (n−1)!{(((x+3i)^n −(x−3i)^n )/((x^2  +9)^n ))}  =(i/2)(−1)^(n−1) (n−1)!×((2i  Im(x+3i)^n )/((x^2  +9)^n ))  =(−1)^n  (n−1)!×((Im(x+3i)^n )/((x^2  +9)^n ))   also we have x+3i =(√(x^2 +9))e^(iarctan((3/x)))  ⇒  (x+3i)^n  =(x^2  +9)^(n/2)  e^(inarctan((3/x)))  ⇒Im(x+3i)^n  =(x^2  +9)^(n/2)  sin(narctan((3/x))) ⇒  f^((n)) (x) =(−1)^n (n−1)!×((sin(narctan((3/x))))/((x^2  +9)^(n/2) ))
1)f(x)=arctan(3x)f(x)=3x2(1+9x2)=3x2+9=3(x3i)(x+3i)=3(1x3i1x+3i)×16i=12i(1x3i1x+3i)f(n)(x)=12i{(1x3i)(n1)(1x+3i)(n1)}(n1)f(n)(x)=i2{(1)n1(n1)!(x3i)n(1)n1(n1)!(x+3i)n}=i2(1)n1(n1)!{(x+3i)n(x3i)n(x2+9)n}=i2(1)n1(n1)!×2iIm(x+3i)n(x2+9)n=(1)n(n1)!×Im(x+3i)n(x2+9)nalsowehavex+3i=x2+9eiarctan(3x)(x+3i)n=(x2+9)n2einarctan(3x)Im(x+3i)n=(x2+9)n2sin(narctan(3x))f(n)(x)=(1)n(n1)!×sin(narctan(3x))(x2+9)n2
Commented by mathmax by abdo last updated on 15/Jun/20
f^((n)) (1) =(−1)^n (n−1)! ×((sin(n arctan3))/(10^(n/2) ))  2) f(x) =Σ_(n=0) ^∞  ((f^((n)) (1))/(n!))(x−1)^n   =f(1) +Σ_(n=1) ^∞  ((f^((n)) (1))/(n!))(x−1)^n   =arctan(3) +Σ_(n=1) ^∞  (((−1)^n )/n)×((sin(narctan(3)))/(10^(n/2) )) (x−1)^n
f(n)(1)=(1)n(n1)!×sin(narctan3)10n22)f(x)=n=0f(n)(1)n!(x1)n=f(1)+n=1f(n)(1)n!(x1)n=arctan(3)+n=1(1)nn×sin(narctan(3))10n2(x1)n

Leave a Reply

Your email address will not be published. Required fields are marked *