let-f-x-arctan-nx-with-n-integr-natural-1-calculate-f-n-x-and-f-n-0-2-developp-f-at-integr-serie- Tinku Tara June 4, 2023 Differentiation 0 Comments FacebookTweetPin Question Number 62809 by mathmax by abdo last updated on 25/Jun/19 letf(x)=arctan(nx)withnintegrnatural1)calculatef(n)(x)andf(n)(0)2)developpfatintegrserie. Commented by mathmax by abdo last updated on 02/Jul/19 1)wehavef′(x)=n1+n2x2=nn2(x2+1n2)=1n(x−in)(x+in)=1nn2i{1x−in−1x+in}=12i{1x−in−1x+in}⇒f(p)(x)=12i{(1x−in)(p−1)−(1x+in)(p−1)}=12i{(−1)p−1(p−1)!(x−in)p−(−1)p−1(p−1)!(x+in)p}=(−1)p−1(p−1)!2i{(x+in)p−(x−in)p(x2+1n2)p}⇒f(p)(0)=(−1)p−1(p−1)!2in2pnp(nx+i)p−(nx−i)p(x2n2+1)pf(n)(x)=(−1)n−1(n−1)!2i{(x+in)n−(x−in)n(x2+1n2)n}=n2n(−1)n−1(n−1)!2i(nx+i)n−(nx−i)n(n2x2+1)n×1nn⇒f(n)(x)=nn(−1)n−1(n−1)!2i(nx+i)n−(nx−i)n(n2x2+1)nwithn⩾1x=0⇒f(n)(0)=nn(−1)n−1(n−1)!2i{in−(−i)n}=nn(−1)n−1(n−1)!2i×2iIm(in)=nn(−1)n−1(n−1)!sin(nπ2)2)f(x)=∑p=0∞f(p)(0)p!xp=∑p=0∞np(−1)p−12i(nx+i)p−(nx−i)p(n2x2+1)pxpp Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: f-t-0-e-xt-x-t-2-dx-with-t-0-1-study-the-set-of-definition-for-f-t-2-study-the-continuity-of-f-3-study-the-derivability-of-f-4-developp-f-at-integr-serie-Next Next post: 1-find-2x-2-1-x-1-x-3-x-2-x-2-dx-2-calculate-5-2x-2-1-x-1-x-3-x-2-x-2-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.