Menu Close

let-f-x-arctan-nx-with-n-integr-natural-1-calculate-f-n-x-and-f-n-0-2-developp-f-at-integr-serie-




Question Number 62809 by mathmax by abdo last updated on 25/Jun/19
let f(x) = arctan(nx)   with n integr natural  1) calculate f^((n)) (x)  and f^((n)) (0)  2) developp f at integr serie .
letf(x)=arctan(nx)withnintegrnatural1)calculatef(n)(x)andf(n)(0)2)developpfatintegrserie.
Commented by mathmax by abdo last updated on 02/Jul/19
1) we have f^′ (x) =(n/(1+n^2 x^2 )) =(n/(n^2 (x^2  +(1/n^2 )))) =(1/(n(x−(i/n))(x+(i/n))))  =(1/n)(n/(2i)){(1/(x−(i/n))) −(1/(x+(i/n)))}  =(1/(2i)){ (1/(x−(i/n))) −(1/(x+(i/n)))} ⇒  f^((p)) (x) =(1/(2i)){  ((1/(x−(i/n))))^((p−1)) −((1/(x+(i/n))))^((p−1)) }=(1/(2i)){ (((−1)^(p−1) (p−1)!)/((x−(i/n))^p )) −(((−1)^(p−1) (p−1)!)/((x+(i/n))^p ))}  =(((−1)^(p−1) (p−1)!)/(2i)){(((x+(i/n))^p  −(x−(i/n))^p )/((x^2  +(1/n^2 ))^p ))} ⇒f^((p)) (0) =(((−1)^(p−1) (p−1)!)/(2i)) (n^(2p) /n^p )(((nx+i)^p −(nx−i)^p )/((x^2 n^2 +1)^p ))  f^((n)) (x) =(((−1)^(n−1) (n−1)!)/(2i)){ (((x+(i/n))^n  −(x−(i/n))^n )/((x^2  +(1/n^2 ))^n ))}  =((n^(2n) (−1)^(n−1) (n−1)!)/(2i)) (((nx+i)^n −(nx−i)^n )/((n^2 x^2  +1)^n ))×(1/n^n ) ⇒  f^((n)) (x)=((n^n (−1)^(n−1) (n−1)!)/(2i))(((nx+i)^n −(nx−i)^n )/((n^2 x^2  +1)^n ))  with n≥1  x=0 ⇒f^((n)) (0) =((n^n (−1)^(n−1) (n−1)!)/(2i)){  i^n −(−i)^n }  =((n^n (−1)^(n−1) (n−1)!)/(2i)) ×2iIm(i^n ) = n^n  (−1)^(n−1) (n−1)!sin(((nπ)/2))  2) f(x) =Σ_(p=0) ^∞   ((f^((p)) (0))/(p!)) x^p   =Σ_(p=0) ^∞    ((n^p (−1)^(p−1) )/(2i)) (((nx+i)^p −(nx−i)^p )/((n^2 x^2  +1)^p )) (x^p /p)
1)wehavef(x)=n1+n2x2=nn2(x2+1n2)=1n(xin)(x+in)=1nn2i{1xin1x+in}=12i{1xin1x+in}f(p)(x)=12i{(1xin)(p1)(1x+in)(p1)}=12i{(1)p1(p1)!(xin)p(1)p1(p1)!(x+in)p}=(1)p1(p1)!2i{(x+in)p(xin)p(x2+1n2)p}f(p)(0)=(1)p1(p1)!2in2pnp(nx+i)p(nxi)p(x2n2+1)pf(n)(x)=(1)n1(n1)!2i{(x+in)n(xin)n(x2+1n2)n}=n2n(1)n1(n1)!2i(nx+i)n(nxi)n(n2x2+1)n×1nnf(n)(x)=nn(1)n1(n1)!2i(nx+i)n(nxi)n(n2x2+1)nwithn1x=0f(n)(0)=nn(1)n1(n1)!2i{in(i)n}=nn(1)n1(n1)!2i×2iIm(in)=nn(1)n1(n1)!sin(nπ2)2)f(x)=p=0f(p)(0)p!xp=p=0np(1)p12i(nx+i)p(nxi)p(n2x2+1)pxpp

Leave a Reply

Your email address will not be published. Required fields are marked *