Menu Close

let-f-x-arctan-x-n-with-n-integr-natural-1-calculate-f-x-and-f-2-x-2-calculate-f-n-x-and-f-n-0-3-developp-f-at-integr-serie-




Question Number 96593 by mathmax by abdo last updated on 03/Jun/20
let f(x) =arctan(x^n ) with n integr natural  1) calculate f^′ (x) and f^((2)) (x)  2) calculate f^((n)) (x) and f^((n)) (0)  3)developp f at integr serie
letf(x)=arctan(xn)withnintegrnatural1)calculatef(x)andf(2)(x)2)calculatef(n)(x)andf(n)(0)3)developpfatintegrserie
Answered by mathmax by abdo last updated on 03/Jun/20
1) we have f(x) =arctan(x^n ) ⇒f^′ (x) =((nx^(n−1) )/(1+x^(2n) ))  f^(′′) (x) =((n(n−1)x^(n−2) (1+x^(2n) )−2n x^(2n−1) .nx^(n−1) )/((1+x^(2n) )^2 ))  =((n(n−1)x^(n−2)  +n(n−1)x^(3n−2)  −2n^2  x^(3n−2) )/((1+x^(2n) )^2 ))  =((n(n−1)x^(n−2)  +(n^2 −n−2n^2 )x^(3n−2) )/((1+x^(2n) )^2 )) =((n(n−1)x^(n−2)  −(n+n^2 )x^(3n−2) )/((1+x^(2n) )^2 ))
1)wehavef(x)=arctan(xn)f(x)=nxn11+x2nf(x)=n(n1)xn2(1+x2n)2nx2n1.nxn1(1+x2n)2=n(n1)xn2+n(n1)x3n22n2x3n2(1+x2n)2=n(n1)xn2+(n2n2n2)x3n2(1+x2n)2=n(n1)xn2(n+n2)x3n2(1+x2n)2
Answered by mathmax by abdo last updated on 03/Jun/20
2)we have f^′ (x) =((nx^(n−1) )/(1+x^(2n) )) poles of f^(′?)   x^(2n)  +1 =0 ⇒x^(2n)  =e^(i(2k+1)π)  ⇒x_k =e^(i(((2k+1)π)/(2n)))     k∈[[0,2n−1]]  ⇒f^′ (x) =((nx^(n−1) )/(Π_(k=0) ^(2n−1) (x−x_k ))) =Σ_(k=0) ^(2n−1)  (a_k /(x−x_k ))    ,  a_k =((nx_k ^(n−1) )/(2n x_k ^(2n−1) )) =(1/2)×(x_k ^n /((−1)))  =−(1/2) e^(i(((2k+1)π)/2))  ⇒f^′ (x) =−(1/2) Σ_(k=0) ^(2n−1)  (e^(i(((2k+1)π)/2))) /(x−x_k )) ⇒  f^((p)) (x) =−(1/2) Σ_(k=0) ^(2n−1)  e^(i(πk +(π/2)))  {(1/(x−x_k ))}^((p−1))   =−(1/2)Σ_(k=0) ^(2n−1)  i(−1)^k ×(((−1)^(p−1)  (p−1)!)/((x−x_k )^p ))  =((i(−1)^p (p−1)!)/2) Σ_(k=0) ^(2n−1)  (((−1)^k )/((x−x_k )^p ))  p=n ⇒f^((n)) (x) =(i/2)(−1)^n (n−1)!Σ_(k=0) ^(2n−1)  (((−1)^k )/((x−x_k )^n ))  f^((n)) (0) =(i/2)(−1)^n (n−1)! Σ_(k=0) ^(2n−1)  (((−1)^k )/((−1)^n  x_k ^n ))  =(i/2)(n−1)! Σ_(k=0) ^(2n−1)  (((−1)^k )/(i(−1)^k )) =(1/2) Σ_(k=0) ^(2n−1) (1) =n ⇒f^((n)) (0) =n
2)wehavef(x)=nxn11+x2npolesoff?x2n+1=0x2n=ei(2k+1)πxk=ei(2k+1)π2nk[[0,2n1]]f(x)=nxn1k=02n1(xxk)=k=02n1akxxk,ak=nxkn12nxk2n1=12×xkn(1)=12ei(2k+1)π2f(x)=12k=02n1ei(2k+1)π2)xxkf(p)(x)=12k=02n1ei(πk+π2){1xxk}(p1)=12k=02n1i(1)k×(1)p1(p1)!(xxk)p=i(1)p(p1)!2k=02n1(1)k(xxk)pp=nf(n)(x)=i2(1)n(n1)!k=02n1(1)k(xxk)nf(n)(0)=i2(1)n(n1)!k=02n1(1)k(1)nxkn=i2(n1)!k=02n1(1)ki(1)k=12k=02n1(1)=nf(n)(0)=n
Commented by mathmax by abdo last updated on 03/Jun/20
3) f(x) =Σ_(p=0) ^∞  ((f^((p)) (0))/(p!)) x^p  =Σ_(p=1) ^∞  (1/(p!)){(i/2)(−1)^p (p−1)! Σ_(k=0) ^(2n−1)  (((−1)^k )/((−1)^p  x_k ^p ))}x^p   =(i/2) Σ_(p=1) ^∞ ( (1/p) Σ_(k=0) ^(2n−1) (−1)^k  x_k ^(−p) )x^p    with x_k =e^(i(((2k+1)π)/(2n))))
3)f(x)=p=0f(p)(0)p!xp=p=11p!{i2(1)p(p1)!k=02n1(1)k(1)pxkp}xp=i2p=1(1pk=02n1(1)kxkp)xpwithxk=ei(2k+1)π2n)

Leave a Reply

Your email address will not be published. Required fields are marked *