let-f-x-arctan-x-n-with-n-integr-natural-1-calculate-f-x-and-f-2-x-2-calculate-f-n-x-and-f-n-0-3-developp-f-at-integr-serie- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 96593 by mathmax by abdo last updated on 03/Jun/20 letf(x)=arctan(xn)withnintegrnatural1)calculatef′(x)andf(2)(x)2)calculatef(n)(x)andf(n)(0)3)developpfatintegrserie Answered by mathmax by abdo last updated on 03/Jun/20 1)wehavef(x)=arctan(xn)⇒f′(x)=nxn−11+x2nf″(x)=n(n−1)xn−2(1+x2n)−2nx2n−1.nxn−1(1+x2n)2=n(n−1)xn−2+n(n−1)x3n−2−2n2x3n−2(1+x2n)2=n(n−1)xn−2+(n2−n−2n2)x3n−2(1+x2n)2=n(n−1)xn−2−(n+n2)x3n−2(1+x2n)2 Answered by mathmax by abdo last updated on 03/Jun/20 2)wehavef′(x)=nxn−11+x2npolesoff′?x2n+1=0⇒x2n=ei(2k+1)π⇒xk=ei(2k+1)π2nk∈[[0,2n−1]]⇒f′(x)=nxn−1∏k=02n−1(x−xk)=∑k=02n−1akx−xk,ak=nxkn−12nxk2n−1=12×xkn(−1)=−12ei(2k+1)π2⇒f′(x)=−12∑k=02n−1ei(2k+1)π2)x−xk⇒f(p)(x)=−12∑k=02n−1ei(πk+π2){1x−xk}(p−1)=−12∑k=02n−1i(−1)k×(−1)p−1(p−1)!(x−xk)p=i(−1)p(p−1)!2∑k=02n−1(−1)k(x−xk)pp=n⇒f(n)(x)=i2(−1)n(n−1)!∑k=02n−1(−1)k(x−xk)nf(n)(0)=i2(−1)n(n−1)!∑k=02n−1(−1)k(−1)nxkn=i2(n−1)!∑k=02n−1(−1)ki(−1)k=12∑k=02n−1(1)=n⇒f(n)(0)=n Commented by mathmax by abdo last updated on 03/Jun/20 3)f(x)=∑p=0∞f(p)(0)p!xp=∑p=1∞1p!{i2(−1)p(p−1)!∑k=02n−1(−1)k(−1)pxkp}xp=i2∑p=1∞(1p∑k=02n−1(−1)kxk−p)xpwithxk=ei(2k+1)π2n) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: find-1-dx-x-2-2xcos-1-with-0-lt-lt-pi-Next Next post: find-0-x-arctanx-1-x-2-2-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.