Menu Close

let-f-x-arctan-x-n-with-n-natural-1-find-f-n-0-and-f-n-1-2-developp-f-at-integr-serie-3-calculte-0-f-x-x-n-dx-with-n-2-




Question Number 124979 by mathmax by abdo last updated on 07/Dec/20
let f(x)=arctan(x^n ) with n natural  1) find f^((n)) (0) and f^((n)) (1)  2)developp f at integr serie  3)calculte  ∫_0 ^∞  ((f(x))/x^n )dx with n≥2
letf(x)=arctan(xn)withnnatural1)findf(n)(0)andf(n)(1)2)developpfatintegrserie3)calculte0f(x)xndxwithn2
Answered by Dwaipayan Shikari last updated on 07/Dec/20
f(x)=tan^(−1) x^n   ∫_0 ^∞ ((tan^(−1) x^n )/x^n )dx=−[n((tan^(−1) x^n )/x^(n−1) )]_0 ^∞ +n^2 ∫_0 ^∞ x^(1−n) (x^(n−1) /(1+x^(2n) )) dx  =n^2 ∫_0 ^∞ (dx/(1+x^(2n) ))              x^(2n) =t⇒2n x^(2n−1) =(dt/dx)  =(n/2)∫_0 ^∞ x^(1−2n) (1/(1+t))dt=(n/2)∫_0 ^∞ t^((1/(2n))−1) (1/(1+t))dt             (t/(1+t))=u⇒(1/((1+t)^2 ))=(du/dt)  =(n/2)∫_0 ^1 (u^((1/(2n))−1) /((1−u)^((1/(2n))−1) ))(1−u)^(−1) du                           (u/(1−u))=t  =(n/2)∫_0 ^1 u^((1/(2n))−1) (1−u)^(−(1/(2n)))  du  =(n/2)Γ((1/(2n)))Γ(1−(1/(2n)))=(n/2).(π/(sin((π/(2n)))))
f(x)=tan1xn0tan1xnxndx=[ntan1xnxn1]0+n20x1nxn11+x2ndx=n20dx1+x2nx2n=t2nx2n1=dtdx=n20x12n11+tdt=n20t12n111+tdtt1+t=u1(1+t)2=dudt=n201u12n1(1u)12n1(1u)1duu1u=t=n201u12n1(1u)12ndu=n2Γ(12n)Γ(112n)=n2.πsin(π2n)
Answered by mathmax by abdo last updated on 07/Dec/20
1) f(x)=arctan(x^n ) ⇒f^((1)) (x)=((nx^(n−1) )/(1+x^(2n) )) ⇒  f^((p)) (x)=n((x^(n−1) /(x^(2n) +1)))^((p−1))   with p≥1  let decompose F(x) =(x^(n−1) /(x^(2n) +1))  z^(2n) +1=0 ⇒z^(2n)  =e^(i(2k+1)π)  ⇒z_k =e^(i(((2k+1)π)/(2n)))   and k∈[[0,2n−1]] ⇒  F(x)=(x^(n−1) /(Π_(k=0) ^(2n−1) (x−z_k ))) =Σ_(k=0) ^(2n−1)  (a_k /(x−z_k ))  we have  a_k =(z_k ^(n−1) /(2n z_k ^(2n−1) )) =(1/(2n))×(z_k ^n /((−1)))=−(1/(2n))z_k ^n  =−(1/(2n))×e^(i(((2k+1)π)/2))   =−(1/(2n)) e^(ikπ)  e^((iπ)/2)  =−(1/(2n))(−1)^k i=((i(−1)^k )/(2n)) ⇒F(x)=(i/(2n))Σ_(k=0) ^(2n−1)  (((−1)^k )/(x−z_k )) ⇒  f^((p)) (x)=(i/2)Σ_(k=0) ^(2n−1) (−1)^k {(1/(x−z_k ))}^((p−1))   =(i/2)Σ_(k=0) ^(2n−1) (−1)^(k  )   (((−1)^(p−1) (p−1)!)/((x−z_k )^p )) ⇒  f^((n)) (x)=(i/2)Σ_(k=0) ^(2n−1) (−1)^k ×(((−1)^(n−1) (n−1)!)/((x−z_k )^n )) ⇒  f^((n)) (0) =((i(−1)^(n−1) )/2)(n−1)!Σ_(k=0) ^(2n−1)  (((−1)^k )/((−z_k )^n ))   =−(i/2)(n−1)! Σ_(k=0) ^(2n−1)  (((−1)^k )/z_k ^n )  f^((n)) (1) =(i/2)Σ_(k=0) ^(2n−1) (−1)^k  (((−1)^(n−1) (n−1)!)/((1−z_k )^n ))
1)f(x)=arctan(xn)f(1)(x)=nxn11+x2nf(p)(x)=n(xn1x2n+1)(p1)withp1letdecomposeF(x)=xn1x2n+1z2n+1=0z2n=ei(2k+1)πzk=ei(2k+1)π2nandk[[0,2n1]]F(x)=xn1k=02n1(xzk)=k=02n1akxzkwehaveak=zkn12nzk2n1=12n×zkn(1)=12nzkn=12n×ei(2k+1)π2=12neikπeiπ2=12n(1)ki=i(1)k2nF(x)=i2nk=02n1(1)kxzkf(p)(x)=i2k=02n1(1)k{1xzk}(p1)=i2k=02n1(1)k(1)p1(p1)!(xzk)pf(n)(x)=i2k=02n1(1)k×(1)n1(n1)!(xzk)nf(n)(0)=i(1)n12(n1)!k=02n1(1)k(zk)n=i2(n1)!k=02n1(1)kzknf(n)(1)=i2k=02n1(1)k(1)n1(n1)!(1zk)n
Answered by mathmax by abdo last updated on 07/Dec/20
2) f(x)=Σ_(n=0) ^∞  ((f^((n)) (0))/(n!))x^n    and f^()n)) (0) is known
2)f(x)=n=0f(n)(0)n!xnandf)n)(0)isknown
Answered by mathmax by abdo last updated on 07/Dec/20
3) A_n =∫_0 ^∞  ((f(x))/x^n )dx ⇒ A_n =∫_0 ^∞  ((arctan(x^n ))/x^n )dx =∫_0 ^∞ x^(−n)  arctan(x^n )dx  by psrts A_n =[(1/(1−n))x^(1−n)  arctan(x^n )]_0 ^∞ −∫_0 ^∞  (1/(1−n))x^(1−n) ×((nx^(n−1) )/(1+x^(2n) ))dx  =(n/(n−1))∫_0 ^∞   (dx/(1+x^(2n) ))  but ∫_0 ^∞   (dx/(1+x^(2n) ))=_(x^(2n) =t→x=t^(1/(2n)) )   ∫_0 ^∞   (1/(2n))t^((1/(2n))−1)   (dt/(1+t))  =(1/(2n))∫_0 ^∞  (t^((1/(2n))−1) /(1+t))dt =(1/(2n))×(π/(sin((π/(2n))))) ⇒A_n =(n/(n−1))×(π/(2nsin((π/(2n)))))  ⇒ A_n =(π/(2(n−1)sin((π/(2n)))))   (n≥2)
3)An=0f(x)xndxAn=0arctan(xn)xndx=0xnarctan(xn)dxbypsrtsAn=[11nx1narctan(xn)]0011nx1n×nxn11+x2ndx=nn10dx1+x2nbut0dx1+x2n=x2n=tx=t12n012nt12n1dt1+t=12n0t12n11+tdt=12n×πsin(π2n)An=nn1×π2nsin(π2n)An=π2(n1)sin(π2n)(n2)

Leave a Reply

Your email address will not be published. Required fields are marked *