Question Number 124979 by mathmax by abdo last updated on 07/Dec/20

Answered by Dwaipayan Shikari last updated on 07/Dec/20
![f(x)=tan^(−1) x^n ∫_0 ^∞ ((tan^(−1) x^n )/x^n )dx=−[n((tan^(−1) x^n )/x^(n−1) )]_0 ^∞ +n^2 ∫_0 ^∞ x^(1−n) (x^(n−1) /(1+x^(2n) )) dx =n^2 ∫_0 ^∞ (dx/(1+x^(2n) )) x^(2n) =t⇒2n x^(2n−1) =(dt/dx) =(n/2)∫_0 ^∞ x^(1−2n) (1/(1+t))dt=(n/2)∫_0 ^∞ t^((1/(2n))−1) (1/(1+t))dt (t/(1+t))=u⇒(1/((1+t)^2 ))=(du/dt) =(n/2)∫_0 ^1 (u^((1/(2n))−1) /((1−u)^((1/(2n))−1) ))(1−u)^(−1) du (u/(1−u))=t =(n/2)∫_0 ^1 u^((1/(2n))−1) (1−u)^(−(1/(2n))) du =(n/2)Γ((1/(2n)))Γ(1−(1/(2n)))=(n/2).(π/(sin((π/(2n)))))](https://www.tinkutara.com/question/Q124987.png)
Answered by mathmax by abdo last updated on 07/Dec/20
![1) f(x)=arctan(x^n ) ⇒f^((1)) (x)=((nx^(n−1) )/(1+x^(2n) )) ⇒ f^((p)) (x)=n((x^(n−1) /(x^(2n) +1)))^((p−1)) with p≥1 let decompose F(x) =(x^(n−1) /(x^(2n) +1)) z^(2n) +1=0 ⇒z^(2n) =e^(i(2k+1)π) ⇒z_k =e^(i(((2k+1)π)/(2n))) and k∈[[0,2n−1]] ⇒ F(x)=(x^(n−1) /(Π_(k=0) ^(2n−1) (x−z_k ))) =Σ_(k=0) ^(2n−1) (a_k /(x−z_k )) we have a_k =(z_k ^(n−1) /(2n z_k ^(2n−1) )) =(1/(2n))×(z_k ^n /((−1)))=−(1/(2n))z_k ^n =−(1/(2n))×e^(i(((2k+1)π)/2)) =−(1/(2n)) e^(ikπ) e^((iπ)/2) =−(1/(2n))(−1)^k i=((i(−1)^k )/(2n)) ⇒F(x)=(i/(2n))Σ_(k=0) ^(2n−1) (((−1)^k )/(x−z_k )) ⇒ f^((p)) (x)=(i/2)Σ_(k=0) ^(2n−1) (−1)^k {(1/(x−z_k ))}^((p−1)) =(i/2)Σ_(k=0) ^(2n−1) (−1)^(k ) (((−1)^(p−1) (p−1)!)/((x−z_k )^p )) ⇒ f^((n)) (x)=(i/2)Σ_(k=0) ^(2n−1) (−1)^k ×(((−1)^(n−1) (n−1)!)/((x−z_k )^n )) ⇒ f^((n)) (0) =((i(−1)^(n−1) )/2)(n−1)!Σ_(k=0) ^(2n−1) (((−1)^k )/((−z_k )^n )) =−(i/2)(n−1)! Σ_(k=0) ^(2n−1) (((−1)^k )/z_k ^n ) f^((n)) (1) =(i/2)Σ_(k=0) ^(2n−1) (−1)^k (((−1)^(n−1) (n−1)!)/((1−z_k )^n ))](https://www.tinkutara.com/question/Q125038.png)
Answered by mathmax by abdo last updated on 07/Dec/20

Answered by mathmax by abdo last updated on 07/Dec/20
![3) A_n =∫_0 ^∞ ((f(x))/x^n )dx ⇒ A_n =∫_0 ^∞ ((arctan(x^n ))/x^n )dx =∫_0 ^∞ x^(−n) arctan(x^n )dx by psrts A_n =[(1/(1−n))x^(1−n) arctan(x^n )]_0 ^∞ −∫_0 ^∞ (1/(1−n))x^(1−n) ×((nx^(n−1) )/(1+x^(2n) ))dx =(n/(n−1))∫_0 ^∞ (dx/(1+x^(2n) )) but ∫_0 ^∞ (dx/(1+x^(2n) ))=_(x^(2n) =t→x=t^(1/(2n)) ) ∫_0 ^∞ (1/(2n))t^((1/(2n))−1) (dt/(1+t)) =(1/(2n))∫_0 ^∞ (t^((1/(2n))−1) /(1+t))dt =(1/(2n))×(π/(sin((π/(2n))))) ⇒A_n =(n/(n−1))×(π/(2nsin((π/(2n))))) ⇒ A_n =(π/(2(n−1)sin((π/(2n))))) (n≥2)](https://www.tinkutara.com/question/Q125040.png)