Menu Close

let-f-x-arctan-x-x-1-find-f-1-x-




Question Number 57411 by Abdo msup. last updated on 03/Apr/19
let f(x)=arctan((√x)+(√(x+1)))  find f^(−1) (x) .
letf(x)=arctan(x+x+1)findf1(x).
Commented by maxmathsup by imad last updated on 04/Apr/19
f is defined on [0,+∞[   we have  f(x)=y ⇔x =f^(−1) (y) and   f(x)=y ⇒arctan((√(x+1))+(√x)) =y ⇒(√(x+1))+(√x)=tany ⇒  x+1 +2(√(x+1))(√x)+x =tan^2 y ⇒2x+1 +2(√(x+1))(√x)=tan^2 y ⇒  (2x+1−tan^2 y)=2(√(x+1))(√x) ⇒(2x+1−tan^2 y)^2 =4x(x+1) ⇒  (2x+1)^2  −2(2x+1)tan^2 y +tan^4 y = 4x^2  +4x ⇒  4x^2  +4x +1 −2(2x+1)tan^2 y +tan^4 y =4x^2  +4x ⇒  1+tan^4 y −2(2x+1)tan^2 y =0 ⇒2(2x+1)tan^2 y = 1+tan^4 y ⇒  2(2x+1) =((1+tan^4 y)/(tan^2 y)) ⇒2x+1 =((1+tan^4 y)/(2tan^2 y)) ⇒2x =((1+tan^4 y)/(2tan^2 y)) −1 =(((tan^2 y−1)^2 )/(2tan^2 y))  ⇒x =(1/4) (((tan^2 y−1)^2 )/(tan^2 y)) ⇒ f^(−1) (x) =(((tan^2 x−1)^2 )/(4tan^2 x)) .
fisdefinedon[0,+[wehavef(x)=yx=f1(y)andf(x)=yarctan(x+1+x)=yx+1+x=tanyx+1+2x+1x+x=tan2y2x+1+2x+1x=tan2y(2x+1tan2y)=2x+1x(2x+1tan2y)2=4x(x+1)(2x+1)22(2x+1)tan2y+tan4y=4x2+4x4x2+4x+12(2x+1)tan2y+tan4y=4x2+4x1+tan4y2(2x+1)tan2y=02(2x+1)tan2y=1+tan4y2(2x+1)=1+tan4ytan2y2x+1=1+tan4y2tan2y2x=1+tan4y2tan2y1=(tan2y1)22tan2yx=14(tan2y1)2tan2yf1(x)=(tan2x1)24tan2x.
Answered by kaivan.ahmadi last updated on 04/Apr/19
y=tg^(−1) ((√x)+(√(x+1)))⇒tgy=(√x)+(√(x+1))⇒  tg^2 y=x+x+1+2(√(x(x+1)))=2x+1+2(√(x(x+1)))  2(√x)(tgy+(1/(2(√x))))=2(√x)tgy+1⇒  (1−2(√x))tgy=1⇒1−2(√x)=(1/(tgy))⇒  2(√x)=1−(1/(tgy))⇒(√x)=(1/2)−(1/(2tgy))⇒  x=((1/2)−(1/(2tgy)))^2 ⇒f^(−1) (x)=(1/4)(1−(1/(tgx)))^2
y=tg1(x+x+1)tgy=x+x+1tg2y=x+x+1+2x(x+1)=2x+1+2x(x+1)2x(tgy+12x)=2xtgy+1(12x)tgy=112x=1tgy2x=11tgyx=1212tgyx=(1212tgy)2f1(x)=14(11tgx)2

Leave a Reply

Your email address will not be published. Required fields are marked *