Menu Close

let-f-x-arctan-xt-2-1-2t-2-dt-1-find-a-explicite-form-of-f-x-2-calculate-0-arctan-t-2-1-2t-2-dt-and-0-arctan-2t-2-1-2t-2-dt-




Question Number 42605 by maxmathsup by imad last updated on 28/Aug/18
let f(x) = ∫_(−∞) ^(+∞)    ((arctan (xt^2 ))/(1+2t^2 ))dt  1) find a explicite form of f(x)  2) calculate ∫_0 ^∞     ((arctan(t^2 ))/(1+2t^2 ))dt  and ∫_0 ^∞     ((arctan(2t^2 ))/(1+2t^2 ))dt
letf(x)=+arctan(xt2)1+2t2dt1)findaexpliciteformoff(x)2)calculate0arctan(t2)1+2t2dtand0arctan(2t2)1+2t2dt
Commented by maxmathsup by imad last updated on 30/Aug/18
1) we have f^′ (x) = ∫_(−∞) ^(+∞)    (t^2 /((1+x^2 t^4 )(1+2t^2 )))dt  let   ϕ(z) = (z^2 /((1 +x^2 z^4 )(1+2z^2 )))  we have  ϕ(z) = (z^2 /((xz^2 −i)(xz^2 +i)((√2)z−i)((√2)z+i))) =(z^2 /(2x^2 (z^2 −(i/x))(z^2  +(i/x))(z−(i/( (√2))))(z+(i/( (√2))))))  (x>0)  = (z^2 /(2x^2 (z−(1/( (√x)))e^((iπ)/4) )(z+(1/( (√x)))e^((iπ)/4) )(z−(1/( (√x)))e^(−((iπ)/4)) )(z+(1/( (√x)))e^(−((iπ)/4)) )(z−(i/( (√2))))(z+(i/( (√2)))))) so the  poles of ϕ are +^−  (1/( (√x))) e^((iπ)/4)   , +^−  (1/( (√x)))e^(−((iπ)/4))    and +^−  (i/( (√2)))  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ { Res(ϕ,(1/( (√x)))e^((iπ)/4) ) +Res(ϕ,−(1/( (√x))) e^(−((iπ)/4)) ) +Res(ϕ,(i/( (√2))))}  Res(ϕ,(e^((iπ)/4) /( (√x))))  = (i/(2x^3 ((2/( (√x)))e^((iπ)/4) )(((2i)/x))(1+((2i)/x)))) =   ((x^2 (√x))/(8 x^3 (x+2i))) e^(−((iπ)/4))   = ((√x)/(8x(x+2i))) e^(−((iπ)/4))   Res(ϕ,−(e^(−((iπ)/4)) /( (√x)))) = ((−i)/(2x^3 (((−2)/( (√x))) e^(−((iπ)/4)) )(((−2i)/( (√x))))(1−((2i)/x)))) =−((√x)/(8x(x−2i))) e^((iπ)/4)   Res(ϕ,(i/( (√2)))) = ((−1)/(4x^2 (((2i)/( (√2))))(−(1/2)−(i/x))(−(1/2) +(i/x)))) = ((−1)/(4i(√2)x^2 ((1/4)+(1/x^2 ))))  =((−1)/(i(√2)(4x^2 )(((x^2  +4)/(4x^2 ))))) = (i/( (√2)(x^2  +4))) ⇒  ∫_(−∞) ^(+∞)   ϕ(z)dz =2iπ {  ((x^2 (√x))/(8x(x+2i))) e^(−((iπ)/4))   −((√x)/(8x(x−2i))) e^((iπ)/4)    +(i/( (√2)(x^2  +4)))}  ....be continued...
1)wehavef(x)=+t2(1+x2t4)(1+2t2)dtletφ(z)=z2(1+x2z4)(1+2z2)wehaveφ(z)=z2(xz2i)(xz2+i)(2zi)(2z+i)=z22x2(z2ix)(z2+ix)(zi2)(z+i2)(x>0)=z22x2(z1xeiπ4)(z+1xeiπ4)(z1xeiπ4)(z+1xeiπ4)(zi2)(z+i2)sothepolesofφare+1xeiπ4,+1xeiπ4and+i2+φ(z)dz=2iπ{Res(φ,1xeiπ4)+Res(φ,1xeiπ4)+Res(φ,i2)}Res(φ,eiπ4x)=i2x3(2xeiπ4)(2ix)(1+2ix)=x2x8x3(x+2i)eiπ4=x8x(x+2i)eiπ4Res(φ,eiπ4x)=i2x3(2xeiπ4)(2ix)(12ix)=x8x(x2i)eiπ4Res(φ,i2)=14x2(2i2)(12ix)(12+ix)=14i2x2(14+1x2)=1i2(4x2)(x2+44x2)=i2(x2+4)+φ(z)dz=2iπ{x2x8x(x+2i)eiπ4x8x(x2i)eiπ4+i2(x2+4)}.becontinued
Commented by maxmathsup by imad last updated on 30/Aug/18
∫_(−∞) ^(+∞)   ϕ(z)dz =2iπ (−2i Im (((√x)/(8x(x−2i))) e^((iπ)/4) )) −((2π)/( (√2)(x^2  +4)))  =4π Im(((√x)/(8x(x−2i))) e^((iπ)/4) ) −((2π)/( (√2)(x^2  +4))) =((π(√x))/(2x)) Im((e^((iπ)/4) /(x−2i)))−((2π)/( (√2)(x^2 +4))) but  (e^((iπ)/4) /(x−2i)) =(((x+2i) e^((iπ)/4) )/(x^2  +4)) =(((x+2i)((1/( (√2))) +(i/( (√2)))))/(x^2  +4)) =(1/( (√2)))  (((x+2i)(1+i))/((x^2  +4)))  =(1/( (√2))) ((x+ix +2i −2)/(x^2  +4)) =(1/( (√2))) ((x−2 +i(x+2))/(x^2  +4)) ⇒Im(...) =((x+2)/( (√2)(x^2  +4))) ⇒  ∫_(−∞) ^(+∞)   ϕ(z)dz  =((π(√x))/(2x)) ((x+2)/( (√2)(x^2  +4))) −((2π)/( (√2)(x^2  +4))) =f^′ (x)  ⇒  f^′ (x) = (π/(2(√2)(√x))) ((x+2)/((x^2  +4))) −((2π)/( (√2)(x^2  +4))) ⇒f(x) =(π/(2(√2))) ∫   ((x+2)/( (√x)(x^2  +4))) −π(√2)∫ (dx/(x^2  +4)) +c
+φ(z)dz=2iπ(2iIm(x8x(x2i)eiπ4))2π2(x2+4)=4πIm(x8x(x2i)eiπ4)2π2(x2+4)=πx2xIm(eiπ4x2i)2π2(x2+4)buteiπ4x2i=(x+2i)eiπ4x2+4=(x+2i)(12+i2)x2+4=12(x+2i)(1+i)(x2+4)=12x+ix+2i2x2+4=12x2+i(x+2)x2+4Im()=x+22(x2+4)+φ(z)dz=πx2xx+22(x2+4)2π2(x2+4)=f(x)f(x)=π22xx+2(x2+4)2π2(x2+4)f(x)=π22x+2x(x2+4)π2dxx2+4+c
Commented by maxmathsup by imad last updated on 30/Aug/18
changement (√x) =tgive ∫   ((x+2)/( (√x)(x^2  +4)))dx =∫   ((t^2  +2)/(t(t^4  +4)))(2t)dt  = ∫   ((2t^2  +4)/(t^4  +4)) dt ⇒f(x) = ∫   ((2t^2  +4)/(t^4  +4))dt−π arctanx +c ...be continued...
changementx=tgivex+2x(x2+4)dx=t2+2t(t4+4)(2t)dt=2t2+4t4+4dtf(x)=2t2+4t4+4dtπarctanx+cbecontinued

Leave a Reply

Your email address will not be published. Required fields are marked *