Menu Close

let-f-x-artan-x-1-1-2x-developp-f-at-integr-serie-




Question Number 34863 by a.i msup by abdo last updated on 12/May/18
let f(x)= ((artan(x+1))/(1+2x))  developp f at integr serie .
letf(x)=artan(x+1)1+2xdeveloppfatintegrserie.
Commented by math khazana by abdo last updated on 13/May/18
for ∣x∣<(1/2)  we have  (1/(1+2x)) = Σ_(n=0) ^∞  (−2x)^n   =Σ_(n=0) ^∞  (−2)^n  x^n    let put w(x)=arctan(x+1)  w^′ (x) =  (1/(1+(x+1)^2 )) = (1/((x+1)^2 −i^2 ))  = (1/((x+1−i)(x+1+i))) =(1/(2i)) ( (1/(x+1−i)) −(1/(x+1+i))) ⇒  ⇒w^((n+1)) (x) =(1/(2i)){ ((1/(x+1−i)))^((n))  −((1/(x+1+i)))^((n)) }  =(1/(2i)) (((−1)^n n!)/((x+1−i)^(n+1) )) −(1/(2i)) (((−1)^n  n!)/((x+1+i)^(n+1) )) ⇒  w^((n+1)) (0) = (((−1)^n n!)/(2i(1−i)^(n+1) )) −(((−1)^n n!)/(2i(1+i)^(n+1) ))  ⇒w^((n)) (0)= (((−1)^(n−1) (n−1)!)/(2i)){  (((1+i)^n  −(1−i)^n )/2^n )}  = (((−1)^(n−1) (n−1)!)/(2i .2^n ))  2iIm(1+i)^n   =(((−1)^(n−1) (n−1)!)/2^n ) ((√2))^n  sin(n(π/4))  we have  w(x)= Σ_(n=0) ^∞  ((w^((n)) (0))/(n!)) x^n     = 1+Σ_(n=1) ^∞   (((−1)^(n−1) (n−1)! ((√2))^n )/(2^n   n!)) sin(n(π/4))x^n   f(x)=( Σ_(n=0) ^∞  a_n x^n ) (Σ_(n=0) ^∞  b_n x^n ) =Σ c_n x^n   with  c_n = Σ_(i+j=n)   a_i bj   so tbe developpement of f(x) is  known .
forx∣<12wehave11+2x=n=0(2x)n=n=0(2)nxnletputw(x)=arctan(x+1)w(x)=11+(x+1)2=1(x+1)2i2=1(x+1i)(x+1+i)=12i(1x+1i1x+1+i)w(n+1)(x)=12i{(1x+1i)(n)(1x+1+i)(n)}=12i(1)nn!(x+1i)n+112i(1)nn!(x+1+i)n+1w(n+1)(0)=(1)nn!2i(1i)n+1(1)nn!2i(1+i)n+1w(n)(0)=(1)n1(n1)!2i{(1+i)n(1i)n2n}=(1)n1(n1)!2i.2n2iIm(1+i)n=(1)n1(n1)!2n(2)nsin(nπ4)wehavew(x)=n=0w(n)(0)n!xn=1+n=1(1)n1(n1)!(2)n2nn!sin(nπ4)xnf(x)=(n=0anxn)(n=0bnxn)=Σcnxnwithcn=i+j=naibjsotbedeveloppementoff(x)isknown.

Leave a Reply

Your email address will not be published. Required fields are marked *