let-f-x-artan-x-1-1-2x-developp-f-at-integr-serie- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 34863 by a.i msup by abdo last updated on 12/May/18 letf(x)=artan(x+1)1+2xdeveloppfatintegrserie. Commented by math khazana by abdo last updated on 13/May/18 for∣x∣<12wehave11+2x=∑n=0∞(−2x)n=∑n=0∞(−2)nxnletputw(x)=arctan(x+1)w′(x)=11+(x+1)2=1(x+1)2−i2=1(x+1−i)(x+1+i)=12i(1x+1−i−1x+1+i)⇒⇒w(n+1)(x)=12i{(1x+1−i)(n)−(1x+1+i)(n)}=12i(−1)nn!(x+1−i)n+1−12i(−1)nn!(x+1+i)n+1⇒w(n+1)(0)=(−1)nn!2i(1−i)n+1−(−1)nn!2i(1+i)n+1⇒w(n)(0)=(−1)n−1(n−1)!2i{(1+i)n−(1−i)n2n}=(−1)n−1(n−1)!2i.2n2iIm(1+i)n=(−1)n−1(n−1)!2n(2)nsin(nπ4)wehavew(x)=∑n=0∞w(n)(0)n!xn=1+∑n=1∞(−1)n−1(n−1)!(2)n2nn!sin(nπ4)xnf(x)=(∑n=0∞anxn)(∑n=0∞bnxn)=Σcnxnwithcn=∑i+j=naibjsotbedeveloppementoff(x)isknown. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Determine-the-coordinates-where-the-function-f-x-ax-2-bx-c-admits-a-local-point-Next Next post: let-f-x-x-arctan-1-e-x-developp-f-at-intrgr-serie- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.