Menu Close

Let-f-x-ax-1-5-1-bx-4-a-b-N-if-times-of-x-equal-62-so-what-are-possible-values-of-the-sum-a-b-




Question Number 178347 by Acem last updated on 15/Oct/22
Let f(x)= (ax+1)^5 .(1+bx)^4  ; a,b ∈ N   if times of x equal 62 so what are possible values   of the sum a, b?
Letf(x)=(ax+1)5.(1+bx)4;a,bNiftimesofxequal62sowhatarepossiblevaluesofthesuma,b?
Answered by Acem last updated on 15/Oct/22
(1+ax)^5 = 1+5ax+10a^2 x^2 +...   (1+bx)^4 = 1+4bx+6b^2 x^2 +...    We take times x from multiplication   (5a+4b)x i.e. 5a+4b= 62 ...(1)     We need to (a+b) so and from (1)   4(a+b) = −a +62   Since a∈ N ⇒ 4(a+b) < 62 ⇔ a+b< 15.5   Since a+b∈ N⇒ a+b≤ 15 ... (2)     We repeat for b from (1)   5(a+b)= b+62 , b∈ N ⇒ 5(a+b)> 62⇒ a+b> 12.4   Since a+b∈ N⇒ a+b≥ 13...(3)     (2) & (3)   We find that the possible values of a+b are:   a+b= 13  ,  a+b= 14  ,   a+b= 15
(1+ax)5=1+5ax+10a2x2+(1+bx)4=1+4bx+6b2x2+Wetaketimesxfrommultiplication(5a+4b)xi.e.5a+4b=62(1)Weneedto(a+b)soandfrom(1)4(a+b)=a+62SinceaN4(a+b)<62a+b<15.5Sincea+bNa+b15(2)Werepeatforbfrom(1)5(a+b)=b+62,bN5(a+b)>62a+b>12.4Sincea+bNa+b13(3)(2)&(3)Wefindthatthepossiblevaluesofa+bare:a+b=13,a+b=14,a+b=15
Commented by Tawa11 last updated on 15/Oct/22
Great sir
Greatsir
Commented by Acem last updated on 15/Oct/22
Thanks Sir
ThanksSir
Answered by mr W last updated on 16/Oct/22
coef. of x term is  5×1^4 ×a×1^4 +4×1^3 ×b×1^5 =5a+4b  5a+4b=62  ⇒a=4k+10 ≥ 1 ⇒k≥−(9/4) ⇒k≥−2  ⇒b=−5k+3 ≥ 1 ⇒k≤(2/5) ⇒k≤0  a+b=4k+10−5k+3=−k+13  (a+b)_(min) =13 at k_(max) =0  (a+b)_(max) =15 at k_(min) =−2  ⇒a+b=13 or 14 or 15
coef.ofxtermis5×14×a×14+4×13×b×15=5a+4b5a+4b=62a=4k+101k94k2b=5k+31k25k0a+b=4k+105k+3=k+13(a+b)min=13atkmax=0(a+b)max=15atkmin=2a+b=13or14or15

Leave a Reply

Your email address will not be published. Required fields are marked *