Menu Close

Let-f-x-ax-2-bx-c-where-a-b-c-are-real-numbers-If-the-numbers-2a-a-b-and-c-are-all-integers-then-the-number-of-integral-values-between-1-and-5-that-f-x-can-take-is-




Question Number 21234 by Tinkutara last updated on 17/Sep/17
Let f(x) = ax^2  + bx + c, where a, b, c  are real numbers. If the numbers 2a,  a + b, and c are all integers, then the  number of integral values between 1  and 5 that f(x) can take is
Letf(x)=ax2+bx+c,wherea,b,carerealnumbers.Ifthenumbers2a,a+b,andcareallintegers,thenthenumberofintegralvaluesbetween1and5thatf(x)cantakeis
Answered by Tinkutara last updated on 17/Sep/17
f(0)=c∈Z  f(1)=a+b+c  f(−1)=a−b+c  Since 2a,a+b,c are integers, so  2a−(a+b)+c=a−b+c∈Z⇒f(−1)∈Z  Similarly (a+b)+c=f(1)∈Z.  f(1)−f(−1)=2b∈Z  f(2)=4a+2b+c∈Z  f(3)=9a+3b+c=a+b+c+8a+2b∈Z  f(4)=16a+4b+c∈Z  f(5)=25a+5b+c=a+b+c+24a+4b∈Z  ∴ f(x) has 5 integral values in [1,5].
f(0)=cZf(1)=a+b+cf(1)=ab+cSince2a,a+b,careintegers,so2a(a+b)+c=ab+cZf(1)ZSimilarly(a+b)+c=f(1)Z.f(1)f(1)=2bZf(2)=4a+2b+cZf(3)=9a+3b+c=a+b+c+8a+2bZf(4)=16a+4b+cZf(5)=25a+5b+c=a+b+c+24a+4bZf(x)has5integralvaluesin[1,5].

Leave a Reply

Your email address will not be published. Required fields are marked *