Menu Close

Let-f-x-be-a-quadratic-polynomial-with-integer-coefficients-such-that-f-0-and-f-1-are-odd-integers-Prove-that-the-equation-f-x-0-does-not-have-an-integer-solution-




Question Number 19245 by Tinkutara last updated on 07/Aug/17
Let f(x) be a quadratic polynomial  with integer coefficients such that f(0)  and f(1) are odd integers. Prove that  the equation f(x) = 0 does not have an  integer solution.
Letf(x)beaquadraticpolynomialwithintegercoefficientssuchthatf(0)andf(1)areoddintegers.Provethattheequationf(x)=0doesnothaveanintegersolution.
Commented by RasheedSindhi last updated on 08/Aug/17
Let f(x)=ax^2 +bx+c  f(0)=c (odd)  f(1)=a+b+c (odd)  c∈O ∧ a+b+c∈O⇒a+b∈E  a+b ∈ E⇒ { ((a,b∈E)),((a,b∈O)) :}  Case−1: a,b∈E ∧ c∈O  Case−2: a,b,c∈O  Continue
Letf(x)=ax2+bx+cf(0)=c(odd)f(1)=a+b+c(odd)cOa+b+cOa+bEa+bE{a,bEa,bOCase1:a,bEcOCase2:a,b,cOContinue
Answered by RasheedSindhi last updated on 09/Aug/17
Quadratic polynomial whose roots  are p and q is  f(x)=x^2 −(p+q)x+pq  f(0)=pq∈O(given)⇒p,q∈O  f(1)=1−(p+q)+pq∈O(given)  But           p,q∈O⇒p+q∈E  and         f(1)=1−(p+q)+pq∈O      ⇒(odd)−(even)+(odd)      ⇒(odd)+(odd)=(even)∉O  This contradiction proves  that p and q are neither odd  nor even or they are not integers.
Quadraticpolynomialwhoserootsarepandqisf(x)=x2(p+q)x+pqf(0)=pqO(given)p,qOf(1)=1(p+q)+pqO(given)Butp,qOp+qEandf(1)=1(p+q)+pqO(odd)(even)+(odd)(odd)+(odd)=(even)OThiscontradictionprovesthatpandqareneitheroddnorevenortheyarenotintegers.
Commented by Tinkutara last updated on 09/Aug/17
Thank you very much Sir!
ThankyouverymuchSir!

Leave a Reply

Your email address will not be published. Required fields are marked *