Menu Close

Let-f-x-be-differentiable-function-and-g-x-be-the-inverse-of-f-x-when-lim-x-2-f-x-x-3-x-2-4-1-2-then-dg-x-dx-x-8-




Question Number 123752 by liberty last updated on 27/Nov/20
Let f(x) be differentiable function  and g(x) be the inverse of f(x).  when lim_(x→2)  (((f(x)−x^3 )/(x^2 −4)))=(1/2) then ((dg(x))/dx)∣_(x=8)  =?
Letf(x)bedifferentiablefunctionandg(x)betheinverseoff(x).whenlimx2(f(x)x3x24)=12thendg(x)dxx=8=?
Commented by benjo_mathlover last updated on 28/Nov/20
Answered by ajfour last updated on 27/Nov/20
say  f(x)−x^3 =2(x−2)  ⇒   f(x)=x^3 +2x−4           x=g^3 +2g−4  for  x=8     g^3 +2g−12=0      ⇒ g=2      1=3g^2 ((dg/dX))+2((dg/dx))  ⇒  ((dg/dx))∣_(x=8)  = (1/(3g^2 +2)) = (1/(14)) .
sayf(x)x3=2(x2)f(x)=x3+2x4x=g3+2g4forx=8g3+2g12=0g=21=3g2(dgdX)+2(dgdx)(dgdx)x=8=13g2+2=114.
Answered by bobhans last updated on 27/Nov/20
g(x)=f^(−1) (x) then g ′(x) = (f^(−1) )′(x)  from the limit we get f(2)=8   or f^(−1) (8) = 2   we know that g′(8)=(1/(f ′(f^(−1) (8))))...(•)    consider lim_(x→2)  ((f(x)−x^3 )/(x^2 −4))=(1/2)  lim_(x→2) ((f ′(x)−3x^2 )/(2x))=(1/2)  ⇔ f ′(2)−12=2 ; f ′(2)=14  substitute into (•) we get  g′(8)=(1/(f ′(f^(−1) (8))))=(1/(f ′(2))) = (1/(14)).
g(x)=f1(x)theng(x)=(f1)(x)fromthelimitwegetf(2)=8orf1(8)=2weknowthatg(8)=1f(f1(8))()considerlimx2f(x)x3x24=12limx2f(x)3x22x=12f(2)12=2;f(2)=14substituteinto()wegetg(8)=1f(f1(8))=1f(2)=114.

Leave a Reply

Your email address will not be published. Required fields are marked *