Menu Close

let-f-x-cos-t-2-xt-3-dt-with-x-gt-0-1-find-f-x-2-calculate-1-4-f-x-dx-and-1-f-x-dx-




Question Number 56310 by maxmathsup by imad last updated on 13/Mar/19
let f(x)=∫_(−∞) ^(+∞)   cos(t^2  +xt +3)dt  with x>0  1) find f(x)  2) calculate ∫_1 ^4 f(x)dx and ∫_1 ^(+∞) f(x)dx
letf(x)=+cos(t2+xt+3)dtwithx>01)findf(x)2)calculate14f(x)dxand1+f(x)dx
Commented by maxmathsup by imad last updated on 14/Mar/19
1) f(x) =Re( ∫_(−∞) ^(+∞)  e^(−i(t^2  +xt +3)) dt)  but  ∫_(−∞) ^(+∞)  e^(−i(t^2  +xt +3)) dt =e^(−3i)  ∫_(−∞) ^(+∞)  e^(−i(t^2  +2(x/2)t  +(x^2 /4) −(x^2 /4))) dt  =e^(−3i)  ∫_(−∞) ^(+∞)   e^(−i(t+(x/2))^2  +i(x^2 /4))  dt =e^(i((x^2 /4)−3))  ∫_(−∞) ^(+∞)   e^(−{(√i)(t +(x/2))}^2 ) dt  changement (√i)(t+(x/2)) =u give  f(x) =e^(i((x^2 /4)−3))   ∫_(−∞) ^(+∞)   e^(−u^2 )   (du/( (√i))) =(π/( (√i))) e^(i((x^2 /4)−3))   =π e^(−((iπ)/4)) e^(i((x^2 /4)−3))  =π e^(i((x^2 /4)−3−(π/4)) ) ⇒f(x) =π cos((x^2 /4)−3−(π/4)) .
1)f(x)=Re(+ei(t2+xt+3)dt)but+ei(t2+xt+3)dt=e3i+ei(t2+2x2t+x24x24)dt=e3i+ei(t+x2)2+ix24dt=ei(x243)+e{i(t+x2)}2dtchangementi(t+x2)=ugivef(x)=ei(x243)+eu2dui=πiei(x243)=πeiπ4ei(x243)=πei(x243π4)f(x)=πcos(x243π4).
Commented by maxmathsup by imad last updated on 14/Mar/19
error from line 5  we have ∫_(−∞) ^(+∞)  e^(−u^2 ) du =(√π) ⇒f(x)=Re(((√π)/( (√i))) e^(i((x^2 /4)−3)) ) ⇒  f(x) =(√π)cos((x^2 /4)−3−(π/4)) .
errorfromline5wehave+eu2du=πf(x)=Re(πiei(x243))f(x)=πcos(x243π4).

Leave a Reply

Your email address will not be published. Required fields are marked *