Question Number 44706 by maxmathsup by imad last updated on 03/Oct/18
$${let}\:{f}_{\alpha} \left({x}\right)\:=\:\frac{{cos}\left(\alpha{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}^{\left({n}\right)} \left({x}\right)\:{and}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\:{developp}\:{f}\:{at}\:{integr}\:{serie} \\ $$$$\left.\mathrm{3}\right)\:{give}\:\int_{\mathrm{0}} ^{{x}} \:{f}_{\alpha} \left({t}\right)\:{dt}\:\:{at}\:{form}\:{of}\:{serie}\: \\ $$$$\left.\mathrm{4}\right)\:{developp}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:{f}_{\alpha} \left({t}\right){dt}\:\:{at}\:\:{integr}\:{serie}\:. \\ $$
Commented by maxmathsup by imad last updated on 04/Oct/18
$$\left.\mathrm{1}\right)\:{we}\:{have}\:{f}_{\alpha} \left({x}\right)\:=\frac{{cos}\left(\alpha{x}\right)}{\left({x}−{i}\right)\left({x}+{i}\right)}\:=\frac{{cos}\left(\alpha{x}\right)}{\mathrm{2}{i}}\left\{\frac{\mathrm{1}}{{x}−{i}}\:−\frac{\mathrm{1}}{{x}+{i}}\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{i}}\left\{\:\frac{{cos}\left(\alpha{x}\right)}{{x}−{i}}\:−\frac{{cos}\left(\alpha{x}\right)}{{x}+{i}}\right\}\:\Rightarrow{f}^{\left({n}\right)} \left({x}\right)\:=\frac{\mathrm{1}}{\mathrm{2}{i}}\left\{\:\left(\frac{{cos}\left(\alpha{x}\right)}{{x}−{i}}\right)^{\left({n}\right)} −\left(\frac{{cos}\left(\alpha{x}\right)}{{x}+{i}}\right)^{\left({n}\right)} \right\}\:{but} \\ $$$$\left(\frac{{cos}\left(\alpha{x}\right)}{\left({x}−{i}\right)}\right)^{\left({n}\right)} \:=\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:\:\left({cos}\left(\alpha{x}\right)^{} \right)^{\left({k}\right)} \:\left(\frac{\mathrm{1}}{{x}−{i}}\right)^{\left({n}−{k}\right)} \:\:\:\:\left({leibniz}\:{formulae}\right) \\ $$$$=\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:\:{cos}\left(\alpha{x}\:+\frac{{k}\pi}{\mathrm{2}}\right)\:\frac{\left(−\mathrm{1}\right)^{\boldsymbol{{n}}−\boldsymbol{{k}}} \left(\boldsymbol{{n}}−\boldsymbol{{k}}\right)!}{\left({x}−{i}\right)^{{n}−{k}\:+\mathrm{1}} }\:\:{also} \\ $$$$\left(\frac{{cos}\left(\alpha{x}\right)}{{x}+{i}}\right)^{\left({n}\right)} \:=\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:\:{cos}\left(\alpha{x}+\frac{\pi}{\mathrm{2}}\right)\frac{\left(−\mathrm{1}\right)^{{n}−{k}} \left({n}−{k}\right)!}{\left({x}+{i}\right)^{{n}−{k}+\mathrm{1}} }\:\Rightarrow \\ $$$${f}^{\left({n}\right)} \left({x}\right)=\frac{\mathrm{1}}{\mathrm{2}{i}}\:\sum_{{k}=\mathrm{0}} ^{{n}} \:\:{C}_{{n}} ^{{k}} \:\:\left(−\mathrm{1}\right)^{{n}−{k}} \left({n}−{k}\right)!\:{cos}\left(\alpha{x}+\frac{{k}\pi}{\mathrm{2}}\right)\left\{\frac{\mathrm{1}}{\left({x}−{i}\right)^{{n}−{k}+\mathrm{1}} }\:−\frac{\mathrm{1}}{\left({x}+{i}\right)^{{n}−{k}+\mathrm{1}} }\right\} \\ $$$${f}^{\left({n}\right)} \left(\mathrm{0}\right)\:=\frac{\mathrm{1}}{\mathrm{2}{i}}\:\sum_{{k}=\mathrm{0}} ^{{n}} \:\left(−\mathrm{1}\right)^{{n}−{k}} \:\frac{{n}!}{{k}!}\:{cos}\left(\frac{{k}\pi}{\mathrm{2}}\right)\left\{{i}^{{n}−{k}+\mathrm{1}} \:−\left(−{i}\right)^{{n}−{k}+\mathrm{1}} \right\} \\ $$$$=\sum_{{k}=\mathrm{0}} ^{{n}} \:\left(−\mathrm{1}\right)^{{n}−{k}} \:\frac{{n}!}{{k}!}\:{cos}\left(\frac{{k}\pi}{\mathrm{2}}\right){sin}\left({n}−{k}+\mathrm{1}\right)\frac{\pi}{\mathrm{2}} \\ $$
Commented by maxmathsup by imad last updated on 05/Oct/18
$$\left.\mathrm{2}\right)\:{we}\:{have}\:{f}\left({x}\right)\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{{f}^{\left({n}\right)} \left(\mathrm{0}\right)}{{n}!}\:{x}^{{n}} \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\left(\:\sum_{{k}=\mathrm{0}} ^{{n}} \:\:\frac{\left(−\mathrm{1}\right)^{{n}−{k}} }{{k}!}\:{cos}\left(\frac{{k}\pi}{\mathrm{2}}\right){sin}\left({n}−{k}+\mathrm{1}\right)\frac{\pi}{\mathrm{2}}\right){x}^{{n}} \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(\sum_{{k}=\mathrm{0}} ^{{n}} \:\:\frac{\left(−\mathrm{1}\right)^{{n}−{k}} }{{k}!}\:{cos}\left(\frac{{k}\pi}{\mathrm{2}}\right){cos}\left(\left({n}−{k}\right)\frac{\pi}{\mathrm{2}}\right)\:{x}^{{n}} \:.\right. \\ $$
Commented by maxmathsup by imad last updated on 05/Oct/18
$$\left.\mathrm{3}\right)\:\int_{\mathrm{0}} ^{{x}} \:{f}_{\alpha} \left({t}\right){dt}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \left(\sum_{{k}=\mathrm{0}} ^{{n}} \:\:\frac{\left(−\mathrm{1}\right)^{{n}−{k}} }{{k}!}\:{cos}\left(\frac{{k}\pi}{\mathrm{2}}\right){cos}\left(\left({n}−{k}\right)\frac{\pi}{\mathrm{2}}\right)\:\frac{{x}^{{n}+\mathrm{1}} }{{n}+\mathrm{1}}\:.\right. \\ $$
Commented by maxmathsup by imad last updated on 05/Oct/18
$$\left.\mathrm{4}\right)\:{let}\:{calculate}\:{first}\:\int_{\mathrm{0}} ^{\infty} \:\:{f}_{\alpha} \left({t}\right){dt}\:\:={I}_{\alpha} \\ $$$${I}_{\alpha} =\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left(\alpha{t}\right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt}\:\Rightarrow\mathrm{2}{I}_{\alpha} \:=\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{cos}\left(\alpha{t}\right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt}\:={Re}\left(\int_{−\infty} ^{+\infty} \:\:\frac{{e}^{{i}\alpha{t}} }{\mathrm{1}+{t}^{\mathrm{2}} }{dt}\right) \\ $$$${let}\:\varphi\left({z}\right)\:=\frac{{e}^{{i}\alpha{z}} }{\mathrm{1}+{z}^{\mathrm{2}} }\:\:{the}\:{poles}\:{of}\:\varphi\:{are}\:{i}\:{and}\:−{i}\:{residus}\:{theorem}\:{give} \\ $$$$\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi{Res}\left(\varphi,{i}\right)\:=\mathrm{2}{i}\pi\:\:\frac{{e}^{−\alpha} }{\mathrm{2}{i}}\:=\pi\:{e}^{−\alpha} \:\Rightarrow\:{I}_{\alpha} =\frac{\pi}{\mathrm{2}}\:{e}^{−\alpha} \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\infty} \:\:{f}_{\alpha} \left({t}\right){dt}\:=\frac{\pi}{\mathrm{2}}\:{e}^{−\alpha} \:=\frac{\pi}{\mathrm{2}}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{\left(−\alpha\right)^{{n}} }{{n}!}\:=\frac{\pi}{\mathrm{2}}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}!}\:\alpha^{{n}} \:. \\ $$$$ \\ $$