let-f-x-cos-x-cosx-2pi-periodic-even-developp-f-at-fourier-serie- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 39025 by maxmathsup by imad last updated on 01/Jul/18 letf(x)=cos(αx)cosx(2πperiodiceven)developpfatfourierserie. Commented by math khazana by abdo last updated on 05/Jul/18 f(x)=a02+∑n=1∞ancos(nx)withan=2T∫[T]f(x)cos(nx)dx=22π∫−ππcos(αx)cos(nx)cosxdx⇒πan=12∫−ππcos(n+α)x+cos(n−α)xcosxdx2πan=∫−ππcos(n+α)xcosxdx+∫−ππcos(n−α)xcosxdxletfindfirstIλ=∫−ππcos(λx)cosxdxIλ=Re(∫−ππeiλxcosxdx)changementeix=zgive∫−ππeiλxcosxdx=∫∣z∣=12zλz+z−1dziz=∫∣z∣=1−2izλz2+1dzletφ(z)=−2izλz2+1∫∣z∣=1φ(z)dz=2iπ{Res(φ,i)+Res(φ,−i)}Res(φ,i)=−2iiλ2i=−iλRes(φ¯,−i)=−2i(−i)λ−2i=(−i)λ⇒∫∣z∣=1φ(z)dz=2iπ{−iλ+(−i)λ}=−2iπ{iλ−(−i)λ}=−2iπ2iIm(iλ)=4πIm(cos(λπ2)+isin(λπ2)}=4πsin(λπ2)⇒Iλ=4πsin(λπ2)⇒2πan=4πsin((n+α)π2)+4πsin((n−α)π2)⇒an=12{sin((n+α)π2)+sin((n−α)π2)}a0=1π∫−ππcos(αx)cosxdx=1π4πsin(απ2)=4sin(α2)⇒a02=2sin(α2)⇒f(x)=2sin(α2)+12∑n=1∞{sin((n+α)π2)+sin((n−α)π2)} Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: find-the-value-of-I-0-1-arctan-2x-1-4x-2-dx-Next Next post: find-the-roots-of-8x-3-4x-1-0- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.