Menu Close

let-f-x-cos-x-cosx-2pi-periodic-even-developp-f-at-fourier-serie-




Question Number 39025 by maxmathsup by imad last updated on 01/Jul/18
let f(x)= ((cos(αx))/(cosx))    (2π periodic even)  developp f at fourier serie.
letf(x)=cos(αx)cosx(2πperiodiceven)developpfatfourierserie.
Commented by math khazana by abdo last updated on 05/Jul/18
f(x) =(a_0 /2) +Σ_(n=1) ^∞  a_n  cos(nx) with  a_n = (2/T) ∫_([T])   f(x)cos(nx) dx  =(2/(2π))  ∫_(−π) ^π   ((cos(αx)cos(nx))/(cosx))dx ⇒  π a_n   = (1/2) ∫_(−π) ^π   ((cos(n+α)x +cos(n−α)x)/(cosx))dx  2π a_n  = ∫_(−π) ^π   ((cos(n+α)x)/(cosx))dx  +∫_(−π) ^π  ((cos(n−α)x)/(cosx))dx  let find first I_λ  =∫_(−π) ^π  ((cos(λx))/(cosx))dx  I_λ   = Re( ∫_(−π) ^π   (e^(iλx) /(cosx))dx)   changement e^(ix) =z give  ∫_(−π) ^π   (e^(iλx) /(cosx)) dx = ∫_(∣z∣=1)    ((2z^λ )/(z+z^(−1) )) (dz/(iz))  = ∫_(∣z∣=1)     ((−2i z^λ )/(z^2  +1))dz   let ϕ(z) = ((−2iz^λ )/(z^(2 )  +1))  ∫_(∣z∣=1)  ϕ(z)dz =2iπ{ Res(ϕ,i) +Res(ϕ,−i)}  Res(ϕ,i)= ((−2i i^λ )/(2i)) = −i^λ   Res(ϕ^� ,−i) =((−2i (−i)^λ )/(−2i)) =(−i)^λ  ⇒  ∫_(∣z∣=1)    ϕ(z)dz =2iπ{ −i^λ  +(−i)^λ  }  =−2iπ{ i^λ  −(−i)^λ } =−2iπ 2i Im(i^λ )  =4π Im( cos(((λπ)/2)) +isin(((λπ)/2))} =4π sin(((λπ)/2)) ⇒  I_λ =4π sin(((λπ)/2)) ⇒  2π a_n = 4πsin((((n+α)π)/2)) +4π sin((((n−α)π)/2))⇒  a_n = (1/2){ sin((((n+α)π)/2)) +sin((((n−α)π)/2))}  a_0 =(1/π) ∫_(−π) ^π  ((cos(αx))/(cosx))dx =(1/π)4π sin(((απ)/2))  =4 sin((α/2)) ⇒(a_0 /2) = 2 sin((α/2)) ⇒  f(x) = 2sin((α/2)) +(1/2)Σ_(n=1) ^∞  {sin((((n+α)π)/2))+sin((((n−α)π)/2))}
f(x)=a02+n=1ancos(nx)withan=2T[T]f(x)cos(nx)dx=22πππcos(αx)cos(nx)cosxdxπan=12ππcos(n+α)x+cos(nα)xcosxdx2πan=ππcos(n+α)xcosxdx+ππcos(nα)xcosxdxletfindfirstIλ=ππcos(λx)cosxdxIλ=Re(ππeiλxcosxdx)changementeix=zgiveππeiλxcosxdx=z∣=12zλz+z1dziz=z∣=12izλz2+1dzletφ(z)=2izλz2+1z∣=1φ(z)dz=2iπ{Res(φ,i)+Res(φ,i)}Res(φ,i)=2iiλ2i=iλRes(φ¯,i)=2i(i)λ2i=(i)λz∣=1φ(z)dz=2iπ{iλ+(i)λ}=2iπ{iλ(i)λ}=2iπ2iIm(iλ)=4πIm(cos(λπ2)+isin(λπ2)}=4πsin(λπ2)Iλ=4πsin(λπ2)2πan=4πsin((n+α)π2)+4πsin((nα)π2)an=12{sin((n+α)π2)+sin((nα)π2)}a0=1πππcos(αx)cosxdx=1π4πsin(απ2)=4sin(α2)a02=2sin(α2)f(x)=2sin(α2)+12n=1{sin((n+α)π2)+sin((nα)π2)}

Leave a Reply

Your email address will not be published. Required fields are marked *