Menu Close

let-f-x-cos-x-developp-f-at-fourier-serie-real-




Question Number 146548 by mathmax by abdo last updated on 13/Jul/21
let f(x)=cos(αx) developp f at fourier serie  (α real)
$$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{cos}\left(\alpha\mathrm{x}\right)\:\mathrm{developp}\:\mathrm{f}\:\mathrm{at}\:\mathrm{fourier}\:\mathrm{serie}\:\:\left(\alpha\:\mathrm{real}\right) \\ $$
Answered by Olaf_Thorendsen last updated on 14/Jul/21
a_0  = (1/T)∫_(−(T/2)) ^(+(T/2)) f(x)dx  a_0  = (1/(2π))∫_(−π) ^(+π) cos(αx)dx  a_0  = (1/(2πα))[sin(αx)]_(−π) ^(+π)   a_0  = ((sin(πα))/(πα))  a_n  = (2/T)∫_(−(T/2)) ^(+(T/2)) f(x)cos(((2πnx)/T))dx  a_n  = (1/π)∫_(−π) ^(+π) cos(αx)cos(nx)dx  a_n  = (1/π)∫_(−π) ^(+π) (1/2)[cos((α−n)x)−cos((α+n)x)]dx  a_n  = (1/(2π))[((sin((α−n)x))/(α−n))−((sin((α+n)x))/(α+n))]_(−π) ^(+π)   a_n  = ((sin(π(α−n)))/(π(α−n)))−((sin(π(α+n)))/(π(α+n)))  b_n  = 0 (f is even)
$${a}_{\mathrm{0}} \:=\:\frac{\mathrm{1}}{\mathrm{T}}\int_{−\frac{\mathrm{T}}{\mathrm{2}}} ^{+\frac{\mathrm{T}}{\mathrm{2}}} {f}\left({x}\right){dx} \\ $$$${a}_{\mathrm{0}} \:=\:\frac{\mathrm{1}}{\mathrm{2}\pi}\int_{−\pi} ^{+\pi} \mathrm{cos}\left(\alpha{x}\right){dx} \\ $$$${a}_{\mathrm{0}} \:=\:\frac{\mathrm{1}}{\mathrm{2}\pi\alpha}\left[\mathrm{sin}\left(\alpha{x}\right)\right]_{−\pi} ^{+\pi} \\ $$$${a}_{\mathrm{0}} \:=\:\frac{\mathrm{sin}\left(\pi\alpha\right)}{\pi\alpha} \\ $$$${a}_{{n}} \:=\:\frac{\mathrm{2}}{\mathrm{T}}\int_{−\frac{\mathrm{T}}{\mathrm{2}}} ^{+\frac{\mathrm{T}}{\mathrm{2}}} {f}\left({x}\right)\mathrm{cos}\left(\frac{\mathrm{2}\pi{nx}}{\mathrm{T}}\right){dx} \\ $$$${a}_{{n}} \:=\:\frac{\mathrm{1}}{\pi}\int_{−\pi} ^{+\pi} \mathrm{cos}\left(\alpha{x}\right)\mathrm{cos}\left({nx}\right){dx} \\ $$$${a}_{{n}} \:=\:\frac{\mathrm{1}}{\pi}\int_{−\pi} ^{+\pi} \frac{\mathrm{1}}{\mathrm{2}}\left[\mathrm{cos}\left(\left(\alpha−{n}\right){x}\right)−\mathrm{cos}\left(\left(\alpha+{n}\right){x}\right)\right]{dx} \\ $$$${a}_{{n}} \:=\:\frac{\mathrm{1}}{\mathrm{2}\pi}\left[\frac{\mathrm{sin}\left(\left(\alpha−{n}\right){x}\right)}{\alpha−{n}}−\frac{\mathrm{sin}\left(\left(\alpha+{n}\right){x}\right)}{\alpha+{n}}\right]_{−\pi} ^{+\pi} \\ $$$${a}_{{n}} \:=\:\frac{\mathrm{sin}\left(\pi\left(\alpha−{n}\right)\right)}{\pi\left(\alpha−{n}\right)}−\frac{\mathrm{sin}\left(\pi\left(\alpha+{n}\right)\right)}{\pi\left(\alpha+{n}\right)} \\ $$$${b}_{{n}} \:=\:\mathrm{0}\:\left({f}\:\mathrm{is}\:\mathrm{even}\right) \\ $$
Answered by mathmax by abdo last updated on 14/Jul/21
f(x)=(a_0 /2)+Σ_(n=1) ^∞  a_n cos(nx)  with a_n =(2/T)∫_(−(T/2)) ^(T/2)  f(x)cos(nx)dx  =(2/π)∫_0 ^π  cos(αx)cos(nx)dx =(1/π)∫_0 ^π (cos(n+α)x+cos(n−α)x)dx  ⇒a_n =[((sin(n+α)x)/(n+α)) +((sin(n−α)x)/(n−α))]_0 ^π   =((sin(nπ+απ))/(n+α)) +((sin(nπ−απ))/(n−α))  =(((−1)^n )/(n+α))sin(πα)−(((−1)^n )/(n−α))sin(πα) =(−1)^n sin(πα){(1/(n+α))−(1/(n−α))}  =−2α(−1)^n sin(απ)/n^2 −α^2  ⇒a_n =(1/π)(−2α(−1)^n sin(απ)/_(n^2 −α^2 )   =−((2α)/π)(−1)^n  sin(απ)/n^2 −α^2   a_o =(2/π)∫_0 ^π  cos(αx)dx =(2/(πα))sin(απ) ⇒  cos(αx)=((sin(πα))/(πα)) −((2α)/π)sin(πα)Σ_(n=1) ^∞  (((−1)^n )/(n^2 −α^2 ))cos(nx)   (α ∈R−Z)  let use this remark...x=π ⇒cos(απ)=((sin(απ))/(απ))−((2α)/π)sin(απ)Σ_(n=1) ^∞ (1/(n^2 −α^2 )) ⇒  cotan(απ) =(1/(απ))−((2α)/π)Σ_(n=1) ^∞  (1/(n^2 −α^2 ))  απ =t ⇒cotan(t)=(1/t)−(2/π).(t/π)Σ_(n=1) ^∞  (1/(n^2 −(t^2 /π^2 )))  ⇒cotant =(1/t)−Σ_(n=1) ^∞  ((2t)/(n^2 π^2 −t^2 )) ⇒  cotant =(1/t)+Σ_(n=1) ^∞  ((2t)/(t^2 −π^2 n^2 ))
$$\mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{a}_{\mathrm{0}} }{\mathrm{2}}+\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\mathrm{a}_{\mathrm{n}} \mathrm{cos}\left(\mathrm{nx}\right)\:\:\mathrm{with}\:\mathrm{a}_{\mathrm{n}} =\frac{\mathrm{2}}{\mathrm{T}}\int_{−\frac{\mathrm{T}}{\mathrm{2}}} ^{\frac{\mathrm{T}}{\mathrm{2}}} \:\mathrm{f}\left(\mathrm{x}\right)\mathrm{cos}\left(\mathrm{nx}\right)\mathrm{dx} \\ $$$$=\frac{\mathrm{2}}{\pi}\int_{\mathrm{0}} ^{\pi} \:\mathrm{cos}\left(\alpha\mathrm{x}\right)\mathrm{cos}\left(\mathrm{nx}\right)\mathrm{dx}\:=\frac{\mathrm{1}}{\pi}\int_{\mathrm{0}} ^{\pi} \left(\mathrm{cos}\left(\mathrm{n}+\alpha\right)\mathrm{x}+\mathrm{cos}\left(\mathrm{n}−\alpha\right)\mathrm{x}\right)\mathrm{dx} \\ $$$$\Rightarrow\mathrm{a}_{\mathrm{n}} =\left[\frac{\mathrm{sin}\left(\mathrm{n}+\alpha\right)\mathrm{x}}{\mathrm{n}+\alpha}\:+\frac{\mathrm{sin}\left(\mathrm{n}−\alpha\right)\mathrm{x}}{\mathrm{n}−\alpha}\right]_{\mathrm{0}} ^{\pi} \\ $$$$=\frac{\mathrm{sin}\left(\mathrm{n}\pi+\alpha\pi\right)}{\mathrm{n}+\alpha}\:+\frac{\mathrm{sin}\left(\mathrm{n}\pi−\alpha\pi\right)}{\mathrm{n}−\alpha} \\ $$$$=\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{n}+\alpha}\mathrm{sin}\left(\pi\alpha\right)−\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{n}−\alpha}\mathrm{sin}\left(\pi\alpha\right)\:=\left(−\mathrm{1}\right)^{\mathrm{n}} \mathrm{sin}\left(\pi\alpha\right)\left\{\frac{\mathrm{1}}{\mathrm{n}+\alpha}−\frac{\mathrm{1}}{\mathrm{n}−\alpha}\right\} \\ $$$$=−\mathrm{2}\alpha\left(−\mathrm{1}\right)^{\mathrm{n}} \mathrm{sin}\left(\alpha\pi\right)/\mathrm{n}^{\mathrm{2}} −\alpha^{\mathrm{2}} \:\Rightarrow\mathrm{a}_{\mathrm{n}} =\frac{\mathrm{1}}{\pi}\left(−\mathrm{2}\alpha\left(−\mathrm{1}\right)^{\mathrm{n}} \mathrm{sin}\left(\alpha\pi\right)/_{\mathrm{n}^{\mathrm{2}} −\alpha^{\mathrm{2}} } \right. \\ $$$$=−\frac{\mathrm{2}\alpha}{\pi}\left(−\mathrm{1}\right)^{\mathrm{n}} \:\mathrm{sin}\left(\alpha\pi\right)/\mathrm{n}^{\mathrm{2}} −\alpha^{\mathrm{2}} \\ $$$$\mathrm{a}_{\mathrm{o}} =\frac{\mathrm{2}}{\pi}\int_{\mathrm{0}} ^{\pi} \:\mathrm{cos}\left(\alpha\mathrm{x}\right)\mathrm{dx}\:=\frac{\mathrm{2}}{\pi\alpha}\mathrm{sin}\left(\alpha\pi\right)\:\Rightarrow \\ $$$$\mathrm{cos}\left(\alpha\mathrm{x}\right)=\frac{\mathrm{sin}\left(\pi\alpha\right)}{\pi\alpha}\:−\frac{\mathrm{2}\alpha}{\pi}\mathrm{sin}\left(\pi\alpha\right)\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{n}^{\mathrm{2}} −\alpha^{\mathrm{2}} }\mathrm{cos}\left(\mathrm{nx}\right)\:\:\:\left(\alpha\:\in\mathrm{R}−\mathrm{Z}\right) \\ $$$$\mathrm{let}\:\mathrm{use}\:\mathrm{this}\:\mathrm{remark}…\mathrm{x}=\pi\:\Rightarrow\mathrm{cos}\left(\alpha\pi\right)=\frac{\mathrm{sin}\left(\alpha\pi\right)}{\alpha\pi}−\frac{\mathrm{2}\alpha}{\pi}\mathrm{sin}\left(\alpha\pi\right)\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} −\alpha^{\mathrm{2}} }\:\Rightarrow \\ $$$$\mathrm{cotan}\left(\alpha\pi\right)\:=\frac{\mathrm{1}}{\alpha\pi}−\frac{\mathrm{2}\alpha}{\pi}\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} −\alpha^{\mathrm{2}} } \\ $$$$\alpha\pi\:=\mathrm{t}\:\Rightarrow\mathrm{cotan}\left(\mathrm{t}\right)=\frac{\mathrm{1}}{\mathrm{t}}−\frac{\mathrm{2}}{\pi}.\frac{\mathrm{t}}{\pi}\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} −\frac{\mathrm{t}^{\mathrm{2}} }{\pi^{\mathrm{2}} }} \\ $$$$\Rightarrow\mathrm{cotant}\:=\frac{\mathrm{1}}{\mathrm{t}}−\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{2t}}{\mathrm{n}^{\mathrm{2}} \pi^{\mathrm{2}} −\mathrm{t}^{\mathrm{2}} }\:\Rightarrow \\ $$$$\mathrm{cotant}\:=\frac{\mathrm{1}}{\mathrm{t}}+\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{2t}}{\mathrm{t}^{\mathrm{2}} −\pi^{\mathrm{2}} \mathrm{n}^{\mathrm{2}} } \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *