Menu Close

let-f-x-cos-xt-t-i-2-dt-1-let-R-Re-f-x-and-I-Im-f-x-extract-R-and-I-2-calculate-R-and-I-3-conclude-the-value-of-f-x-4-calculate-cos-2t-t-i-




Question Number 42305 by maxmathsup by imad last updated on 22/Aug/18
let f(x) = ∫_(−∞) ^(+∞)   ((cos(xt))/((t−i)^2 )) dt  1) let R =Re(f(x)) and I =Im(f(x)) extract R and I  2) calculate R and I  3) conclude the value of f(x)  4) calculate ∫_(−∞) ^(+∞)    ((cos(2t))/((t−i)^2 ))dt  5) let u_n = ∫_(−∞) ^(+∞)    ((cos((t/n)))/((t−i)^2 ))dt    (n natral integer not o)  find lim_(n→+∞) u_n     and  study the convergence of Σu_n
letf(x)=+cos(xt)(ti)2dt1)letR=Re(f(x))andI=Im(f(x))extractRandI2)calculateRandI3)concludethevalueoff(x)4)calculate+cos(2t)(ti)2dt5)letun=+cos(tn)(ti)2dt(nnatralintegernoto)findlimn+unandstudytheconvergenceofΣun
Commented by maxmathsup by imad last updated on 22/Aug/18
i^2  =−1
i2=1
Commented by maxmathsup by imad last updated on 23/Aug/18
1) we have f(x) = ∫_(−∞) ^(+∞)   ((cos(xt)(t+i)^2 )/((t−i)^2 (t+i)^2 ))dt =∫_(−∞) ^(+∞)   (((t^2  +2it −1)cos(xt))/((t^2  +1)^2 ))dt  = ∫_(−∞) ^(+∞)   (((t^2 −1)cos(xt))/((t^2  +1)^2 )) dt +i ∫_(−∞) ^(+∞)    ((2t cos(xt))/((t^2  +1)^2 ))dt ⇒  Re(f(x)) = ∫_(−∞) ^(+∞)    (((t^2 −1)cos(xt))/((t^2  +1)^2 ))dt  and Im (f(x)) = ∫_(−∞) ^(+∞)  ((2t cos(xt))/((t^2  +1)^2 )) dt(=0)
1)wehavef(x)=+cos(xt)(t+i)2(ti)2(t+i)2dt=+(t2+2it1)cos(xt)(t2+1)2dt=+(t21)cos(xt)(t2+1)2dt+i+2tcos(xt)(t2+1)2dtRe(f(x))=+(t21)cos(xt)(t2+1)2dtandIm(f(x))=+2tcos(xt)(t2+1)2dt(=0)
Commented by maxmathsup by imad last updated on 23/Aug/18
2) let caoculate R   =Re( ∫_(−∞) ^(+∞)   (((x^2 −1)e^(ixt) )/((x^2  +1)^2 ))dt) let consider the complex  function ϕ(z) =(((z^2 −1)e^(ixz) )/((z^2  +1)^2 )) we have ϕ(z) =(((z^2 −1)e^(ixz) )/((z−i)^2 (z+i)^2 ))(   iand −i double poles)  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,i) but Res(ϕ,i) =lim_(z→i)   (1/((2−1)!)){(z−i)^2 ϕ(z)}^((1))   =lim_(z→i)  { (((z^2 −1)e^(ixz) )/((z+i)^2 ))}^((1))  =lim_(z→i)  (((2z  +ix(z^2 −1))e^(ixz) (z+i)^2  −2(z+i)(z^2 −1)e^(ixz) )/((z+i)^4 ))  =lim_(z→i)    (((2z +ixz^2 −ix)e^(ixz) (z+i)−2(z^2 −1)e^(ixz) )/((z+i)^3 ))  = (((2i−ix −ix)e^(−x) (2i)  +4 e^(−x) )/((2i)^3 )) =((2i(2i−2ix)e^(−x)  +4 e^(−x) )/(−8i))  =((−4(1−x)e^(−x)  +4e^(−x) )/(−8i)) = ((4x e^(−x) )/(−8i)) =−(x/(2i)) e^(−x)  ⇒∫_(−∞) ^(+∞) ϕ(z)dz =2iπ(−(x/(2i))e^(−x) )  = −πx e^(−x)   ⇒ R  =−π x e^(−x)     also  I =Im(f(x))=0
2)letcaoculateR=Re(+(x21)eixt(x2+1)2dt)letconsiderthecomplexfunctionφ(z)=(z21)eixz(z2+1)2wehaveφ(z)=(z21)eixz(zi)2(z+i)2(iandidoublepoles)+φ(z)dz=2iπRes(φ,i)butRes(φ,i)=limzi1(21)!{(zi)2φ(z)}(1)=limzi{(z21)eixz(z+i)2}(1)=limzi(2z+ix(z21))eixz(z+i)22(z+i)(z21)eixz(z+i)4=limzi(2z+ixz2ix)eixz(z+i)2(z21)eixz(z+i)3=(2iixix)ex(2i)+4ex(2i)3=2i(2i2ix)ex+4ex8i=4(1x)ex+4ex8i=4xex8i=x2iex+φ(z)dz=2iπ(x2iex)=πxexR=πxexalsoI=Im(f(x))=0
Commented by maxmathsup by imad last updated on 23/Aug/18
3) we have f(x) =Re(f(x)) +i Im(f(x)) ⇒ f(x)=−πx e^(−x)   .
3)wehavef(x)=Re(f(x))+iIm(f(x))f(x)=πxex.
Commented by maxmathsup by imad last updated on 23/Aug/18
4)  ∫_(−∞) ^(+∞)   ((cos(2t))/((t−i)^2 )) dt  =f(2) = −2π e^(−2)    =((−2π)/e^2 )  .
4)+cos(2t)(ti)2dt=f(2)=2πe2=2πe2.
Commented by maxmathsup by imad last updated on 23/Aug/18
5) we have u_n = ∫_(−∞) ^(+∞)   ((cos((t/n)))/((t−i)^2 ))dt  =f((1/n)) =−(π/n) e^(−(1/n))    ⇒ lim_(n→+∞) u_n =0  and Σ_(n=1) ^∞  u_n =−Σ_(n=1) ^∞  (π/n) e^(−(1/n))      but   e^u   =1+u +o(u^2 )(u→0) ⇒  e^(−(1/n))   =1−(1/n) +o((1/n^2 )) ⇒(π/n) e^(−(1/n))    =(π/n) −(π/n^2 ) +o((1/n)) but  Σ (π/n) diverges  Σ (π/n^2 ) converges ⇒ Σ u_n   diverges .
5)wehaveun=+cos(tn)(ti)2dt=f(1n)=πne1nlimn+un=0andn=1un=n=1πne1nbuteu=1+u+o(u2)(u0)e1n=11n+o(1n2)πne1n=πnπn2+o(1n)butΣπndivergesΣπn2convergesΣundiverges.

Leave a Reply

Your email address will not be published. Required fields are marked *