Menu Close

let-f-x-cosx-cos-2x-cos-3x-1-calculate-f-n-x-and-f-n-0-2-developp-f-at-integr-serie-3-calculate-0-pi-2-f-x-dx-




Question Number 101500 by mathmax by abdo last updated on 03/Jul/20
let f(x)=cosx .cos(2x).cos(3x)  1)calculate f^((n)) (x) and f^((n)) (0)  2)developp f at  integr serie  3. calculate ∫_0 ^(π/2)  f(x)dx
letf(x)=cosx.cos(2x).cos(3x)1)calculatef(n)(x)andf(n)(0)2)developpfatintegrserie3.calculate0π2f(x)dx
Commented by bemath last updated on 03/Jul/20
(3)∫_0 ^(π/2) f(x) dx =[(1/4)x+(1/(24))sin 6x+  (1/8)sin 2x+(1/(16))sin 4x ]_0 ^(π/2)   = (π/8) ■  cos (3x)cos (x)cos (2x)=  (1/2)(cos 4x+cos 2x)cos 2x=  (1/2)(cos 4xcos 2x+cos^2 2x)=  (1/2)((1/2)(cos 6x+cos 2x)+(1/2)+(1/2)cos 4x)=  (1/4)cos 6x+(1/4)cos 2x+(1/4)+(1/4)cos 4x
(3)π/20f(x)dx=[14x+124sin6x+18sin2x+116sin4x]0π/2=π8◼cos(3x)cos(x)cos(2x)=12(cos4x+cos2x)cos2x=12(cos4xcos2x+cos22x)=12(12(cos6x+cos2x)+12+12cos4x)=14cos6x+14cos2x+14+14cos4x
Answered by Ramajunan last updated on 03/Jul/20
Nice question  Expressing f(x) as the sum of cosines angles  cosxcos(2x)cos(3x)  ⇒(1/4)(cos(5x)+cosx)cosx  ⇒(1/2)cos(5x)cosx+(1/2)cos^2 x  ⇒f(x)=(1/4)[cos(6x)+cos(4x)+cos(2x)+1]  f^′ (x)=(1/4)[−6sin(6x)−4sin(4x)−2sin(2x)]  f^” (x)=(1/4)(−6^2 cos(6x)−4^2 cos(4x)−2^2 cos(2x)]  f^((3)) (x)=(1/4)(6^3 sin(6x)+4^3 sin(x)+2^3 sin(2x)  f^((n)) (x)=(1/4)(6^n cos(6x+((nπ)/2))+4^n cos(4x+((nπ)/2))+2^n cos(2x+((nπ)/2))] for ∨n  f^n (0)=(1/4)(6^n cos(((nπ)/2))+4^n cos(((nπ)/2))+2^n cos(((nπ)/2)))  =(1/4)(6^n +4^n +2^n )cos(((nπ)/2))    2) Don′t understand number 2    Number 3  ∫_0 ^(π/2) cosxcos(2x)cos(3x)dx  ∫_0 ^(π/2) f(x)=(1/4)∫_0 ^(π/2) [cos(6x)+cos(4x)+cos(2x)+1]  [(1/4)(((sin(6x))/6)+((cos(4x))/4)+((sin(2x))/2)+x)]_0 ^(π/2)
NicequestionExpressingf(x)asthesumofcosinesanglescosxcos(2x)cos(3x)14(cos(5x)+cosx)cosx12cos(5x)cosx+12cos2xf(x)=14[cos(6x)+cos(4x)+cos(2x)+1]f(x)=14[6sin(6x)4sin(4x)2sin(2x)]f(x)=14(62cos(6x)42cos(4x)22cos(2x)]f(3)(x)=14(63sin(6x)+43sin(x)+23sin(2x)f(n)(x)=14(6ncos(6x+nπ2)+4ncos(4x+nπ2)+2ncos(2x+nπ2)]fornfn(0)=14(6ncos(nπ2)+4ncos(nπ2)+2ncos(nπ2))=14(6n+4n+2n)cos(nπ2)2)Dontunderstandnumber2Number30π2cosxcos(2x)cos(3x)dx0π2f(x)=140π2[cos(6x)+cos(4x)+cos(2x)+1][14(sin(6x)6+cos(4x)4+sin(2x)2+x)]0π2
Commented by abdomathmax last updated on 03/Jul/20
thanks sir.
thankssir.
Answered by mathmax by abdo last updated on 04/Jul/20
1) let transform f(x) to sum we have   f(x) =cosx cos(2x).cos(3x) =(1/2){cos(3x)+cosx}cos(3x)  =(1/2)cos^2 (3x)+(1/2) cosx cos(3x)  =(1/4)(1+cos(6x))+(1/4){cos(4x)+cos(2x)}  =(1/4)(1+cos(2x)+cos(4x) +cos(6x)} so for n≥1 we get  f^((n)) (x) =(1/4){ cos^((n)) (2x)+cos^((n)) (4x) +cos^((n)) (6x)}  =(1/4){ (((e^(2ix) +e^(−2ix) )/2))^((n))  +(((e^(4ix) +e^(−4ix) )/2))^((n) )  +(((e^(6ix)  +e^(−6ix) )/2))^((n)) }  =(1/8){  (2i)^n  e^(2ix)  +(−2i)^n  e^(−2ix)  +(4i)^n  e^(4ix)  +(−4i)^n  e^(−4ix)  +(6i)^n  e^(6ix)  +(−6i)^n  e^(−6ix) }  ⇒f^((n)) (0) =(1/8){ (2i)^(n )  +(−2i)^n  +(4i)^n +(−4i)^(n )  +(6i)^n  +(−6i)^n }  =(1/8){ 2^n (i^(n ) +(−i)^n )+4^n (i^(n ) +(−i)^n ) +6^n (i^(n ) +(−i)^n )}  =(1/8){2^n (2 cos(((nπ)/2))) +4^n (2cos(((nπ)/2)))+6^n (2cos(((nπ)/2))}  f^((n)) (0)=(1/4)cos(((nπ)/2)){ 2^n  +4^n  +6^n }
1)lettransformf(x)tosumwehavef(x)=cosxcos(2x).cos(3x)=12{cos(3x)+cosx}cos(3x)=12cos2(3x)+12cosxcos(3x)=14(1+cos(6x))+14{cos(4x)+cos(2x)}=14(1+cos(2x)+cos(4x)+cos(6x)}soforn1wegetf(n)(x)=14{cos(n)(2x)+cos(n)(4x)+cos(n)(6x)}=14{(e2ix+e2ix2)(n)+(e4ix+e4ix2)(n)+(e6ix+e6ix2)(n)}=18{(2i)ne2ix+(2i)ne2ix+(4i)ne4ix+(4i)ne4ix+(6i)ne6ix+(6i)ne6ix}f(n)(0)=18{(2i)n+(2i)n+(4i)n+(4i)n+(6i)n+(6i)n}=18{2n(in+(i)n)+4n(in+(i)n)+6n(in+(i)n)}=18{2n(2cos(nπ2))+4n(2cos(nπ2))+6n(2cos(nπ2)}f(n)(0)=14cos(nπ2){2n+4n+6n}
Commented by mathmax by abdo last updated on 04/Jul/20
2) f(x) =Σ_(n=0) ^∞  ((f^((n)) (0))/(n!)) x^(n )  =f(0) +Σ_(n=1) ^∞  ((f^((n)) (0))/(n!)) x^n   f(x)=1 +(1/4)Σ_(n=1) ^(∞ )   ((2^n  +4^n  +6^n )/(n!)) cos(((nπ)/2)) x^n
2)f(x)=n=0f(n)(0)n!xn=f(0)+n=1f(n)(0)n!xnf(x)=1+14n=12n+4n+6nn!cos(nπ2)xn
Commented by mathmax by abdo last updated on 04/Jul/20
3) we have f(x) =(1/4){1+cos(2x)+cos(4x) +cos(6x)} ⇒  ∫_0 ^(π/2)  f(x)dx =(π/8) +(1/4)∫_0 ^(π/2)  cos(2x)dx +(1/4)∫_0 ^(π/2)  cos(4x)dx +(1/4) ∫_0 ^(π/2)  cos(6x)dx  =(π/8) +(1/8)[sin(2x)]_0 ^(π/2)  +(1/(16))[sin(4x)]_0 ^(π/2)  +(1/(24))[sin(6x)]_0 ^(π/2)   =(π/8) +0 +0 +0 =(π/8) ⇒ ∫_0 ^(π/2)  f(x)dx =(π/8)
3)wehavef(x)=14{1+cos(2x)+cos(4x)+cos(6x)}0π2f(x)dx=π8+140π2cos(2x)dx+140π2cos(4x)dx+140π2cos(6x)dx=π8+18[sin(2x)]0π2+116[sin(4x)]0π2+124[sin(6x)]0π2=π8+0+0+0=π80π2f(x)dx=π8

Leave a Reply

Your email address will not be published. Required fields are marked *