Question Number 56583 by maxmathsup by imad last updated on 18/Mar/19
$${let}\:{f}\left({x}\right)\:=\frac{{cosx}}{{x}^{\mathrm{2}} \:+\mathrm{1}} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}^{\left({n}\right)} \left({x}\right)\:\:{then}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right){calculste}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{3}\right)\:{developp}\:{f}\:{at}\:{integr}\:{serie}\:. \\ $$
Commented by maxmathsup by imad last updated on 20/Mar/19
$$\left.\mathrm{1}\right)\:{we}\:{have}\:{f}\left({x}\right)\:=\frac{{cosx}}{\left({x}−{i}\right)\left({x}+{i}\right)}\:=\frac{\mathrm{1}}{\mathrm{2}{i}}\left\{\frac{{cosx}}{{x}−{i}}\:−\frac{{cosx}}{{x}+{i}}\right\}\:\Rightarrow \\ $$$${f}^{\left({n}\right)} \left({x}\right)=\frac{\mathrm{1}}{\mathrm{2}{i}}\left\{\:\:\left(\frac{{cosx}}{{x}−{i}}\right)^{\left({n}\right)} −\left(\frac{{cosx}}{{x}+{i}}\right)^{\left({n}\right)} \right\}\:{leibniz}\:{formula}\:{give} \\ $$$$\left(\frac{{cosx}}{{x}+{i}}\right)^{\left({n}\right)} \:=\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:\:\left(\frac{\mathrm{1}}{{x}+{i}}\right)^{\left({k}\right)} \left({cosx}\right)^{\left({n}−{k}\right)} \:=\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:\frac{\left(−\mathrm{1}\right)^{{k}} {k}!}{\left({x}+{i}\right)^{{k}+\mathrm{1}} }\:{cos}\left({x}\:+\left({n}−{k}\right)\frac{\pi}{\mathrm{2}}\right) \\ $$$${also}\:{for}\:{the}\:{same}\:{raison}\:\:\left(\frac{{cosx}}{{x}−{i}}\right)^{\left({n}\right)} \:\:=\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:\:\frac{\left(−\mathrm{1}\right)^{{k}} {k}!}{\left({x}−{i}\right)^{{k}+\mathrm{1}} }\:{cos}\left({x}+\left({n}−{k}\right)\frac{\pi}{\mathrm{2}}\right) \\ $$$$\Rightarrow{f}^{\left({n}\right)} \left({x}\right)\:=\frac{\mathrm{1}}{\mathrm{2}{i}}\:\sum_{{k}=\mathrm{0}} ^{{n}} \:\:{C}_{{n}} ^{{k}} \:\left(−\mathrm{1}\right)^{{k}} {k}!{cos}\left({x}+\left({n}−{k}\right)\frac{\pi}{\mathrm{2}}\right)\left\{\frac{\mathrm{1}}{\left({x}−{i}\right)^{{k}+\mathrm{1}} }\:−\frac{\mathrm{1}}{\left({x}+{i}\right)^{{k}+\mathrm{1}} }\right\} \\ $$$${f}^{\left({n}\right)} \left({x}\right)=\frac{\mathrm{1}}{\mathrm{2}{i}}\:\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \left(−\mathrm{1}\right)^{{k}} {k}!\:{cos}\left({x}+\left({n}−{k}\right)\frac{\pi}{\mathrm{2}}\right)\frac{\left({x}+{i}\right)^{{k}+\mathrm{1}} −\left({x}−{i}\right)^{{k}+\mathrm{1}} }{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{{k}+\mathrm{1}} } \\ $$$$\left.\mathrm{2}\right){x}=\mathrm{0}\:\Rightarrow{f}^{\left({n}\right)} \left(\mathrm{0}\right)\:=\frac{\mathrm{1}}{\mathrm{2}{i}}\:\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \left(−\mathrm{1}\right)^{{k}} {k}!\:{cos}\left(\left({n}−{k}\right)\frac{\pi}{\mathrm{2}}\right)\:\frac{\mathrm{2}{i}\:{Im}\left({i}^{{k}+\mathrm{1}} \right)}{\mathrm{1}}\:\Rightarrow \\ $$$${f}^{\left({n}\right)} \left(\mathrm{0}\right)\:=\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \left(−\mathrm{1}\right)^{{k}} {k}!\:{cos}\left(\left({n}−{k}\right)\frac{\pi}{\mathrm{2}}\right){sin}\left(\left({k}+\mathrm{1}\right)\frac{\pi}{\mathrm{2}}\right)\:. \\ $$$$\left.\mathrm{3}\right)\:{f}\left({x}\right)\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{{f}^{\left({n}\right)} \left(\mathrm{0}\right)}{{n}!}\:{x}^{{n}} \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{1}}{{n}!}\left\{\sum_{{k}=\mathrm{0}} ^{{n}} \:\frac{{n}!}{{k}!\left({n}−{k}\right)!}\left(−\mathrm{1}\right)^{{k}} {k}!\:{cos}\left(\left({n}−{k}\right)\frac{\pi}{\mathrm{2}}\right){sin}\left(\left({k}+\mathrm{1}\right)\frac{\pi}{\mathrm{2}}\right\}{x}^{{n}} \:\Rightarrow\right. \\ $$$${f}\left({x}\right)\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\left\{\sum_{{k}=\mathrm{0}} ^{{n}} \:\frac{\left(−\mathrm{1}\right)^{{k}} }{\left({n}−{k}\right)!}\:{cos}\left(\left({n}−{k}\right)\frac{\pi}{\mathrm{2}}\right){sin}\left(\left({k}+\mathrm{1}\right)\frac{\pi}{\mathrm{2}}\right)\right\}{x}^{{n}} \:. \\ $$