Menu Close

let-f-x-dt-t-2-2xt-1-2-with-x-lt-1-x-real-1-determine-a-explicit-form-for-f-x-2-find-also-g-x-tdt-t-2-2xt-1-3-3-calculate-




Question Number 57746 by maxmathsup by imad last updated on 10/Apr/19
let f(x)=∫_(−∞) ^(+∞)     (dt/((t^2 −2xt +1)^2 ))  with ∣x∣<1   (x real)  1) determine a explicit form  for f(x)  2) find also g(x) =∫_(−∞) ^(+∞)    ((tdt)/((t^2 −2xt +1)^3 ))  3) calculate ∫_(−∞) ^(+∞)    (dt/((t^2 −(√2)t +1)^2 ))   and ∫_(−∞) ^(+∞)   ((tdt)/((t^2 −(√2)t +1)^3 ))  4) calculate A(θ) =∫_(−∞) ^(+∞)    (dt/((t^2  −2cosθ t+1)^2 ))   and   B(θ) =∫_(−∞) ^(+∞)     ((tdt)/((t^2  −2cosθ t +1)^3 ))    with 0<θ <(π/2)     .
letf(x)=+dt(t22xt+1)2withx∣<1(xreal)1)determineaexplicitformforf(x)2)findalsog(x)=+tdt(t22xt+1)33)calculate+dt(t22t+1)2and+tdt(t22t+1)34)calculateA(θ)=+dt(t22cosθt+1)2andB(θ)=+tdt(t22cosθt+1)3with0<θ<π2.
Commented by maxmathsup by imad last updated on 13/Apr/19
1) let consider the complex function ϕ(z) =(1/((z^2 −2xz +1)^2 ))  let determine the poles of ϕ   z^2 −2xz +1 =0   Δ^′  =x^2 −1 =(i(√(1−x^2 )))^2  ⇒z_1 =x+i(√(1−x^2 )) and z_2 =x−i(√(1−x^2 ))  ϕ(z) =(1/((z−z_1 )^2 (z−z_2 )^2 ))  the poles of ϕ are z_1  and z_2  (doubles)  residus theorem give ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,z_1 )  Res(ϕ,z_1 ) =lim_(z→z_1  )     (1/((2−1)!)){(z−z_1 )^2  ϕ(z)}^((1))   =lim_(z→z_1 )    {(1/((z−z_2 )^2 ))}^((1))  =lim_(z→z_1 )    ((−2(z−z_2 ))/((z−z_2 )^4 )) =lim_(z→z_2 )     ((−2)/((z−z_2 )^3 ))  =((−2)/((z_1 −z_2 )^3 )) =((−2)/((2i(√(1−x^2 )))^3 )) =((−2)/(−8i(1−x^2 )(√(1−x^2 )))) =(1/(4i(1−x^2 )(√(1−x^2 )))) ⇒  f(x) =∫_(−∞) ^(+∞)  ϕ(z)dz = 2iπ (1/(4i(1−x^2 )(√(1−x^2 )))) ⇒f(x) =(π/(2(1−x^2 )(√(1−x^2 ))))  with ∣x∣<1 .
1)letconsiderthecomplexfunctionφ(z)=1(z22xz+1)2letdeterminethepolesofφz22xz+1=0Δ=x21=(i1x2)2z1=x+i1x2andz2=xi1x2φ(z)=1(zz1)2(zz2)2thepolesofφarez1andz2(doubles)residustheoremgive+φ(z)dz=2iπRes(φ,z1)Res(φ,z1)=limzz11(21)!{(zz1)2φ(z)}(1)=limzz1{1(zz2)2}(1)=limzz12(zz2)(zz2)4=limzz22(zz2)3=2(z1z2)3=2(2i1x2)3=28i(1x2)1x2=14i(1x2)1x2f(x)=+φ(z)dz=2iπ14i(1x2)1x2f(x)=π2(1x2)1x2withx∣<1.
Commented by maxmathsup by imad last updated on 13/Apr/19
2) we have f^′ (x) =∫_(−∞) ^(+∞)   (∂/∂x)((1/((t^2 −2xt +1)^2 )))dt  =∫_(−∞) ^(+∞)    ((2t(t^2 −2xt +1))/((t^2 −2xt +1)^4 )) dt = 2 ∫_(−∞) ^(+∞)   ((t dt)/((t^2 −2xt +1)^3 )) =2g(x) ⇒g(x)=(1/2)f^′ (x)   we have f(x) =(π/(2(1−x^2 )(√(1−x^2 )))) ⇒f(x) =(π/2){(1−x^2 )^(−1) (1−x^2 )^(−(1/2)) } ⇒  f^′ (x) =(π/2){2x (1−x^2 )^(−2) (1−x^2 )^(−(1/2))   +x(1−x^2 )^(−(3/2)) (1−x^2 )^(−1) }  =(π/2){  ((2x)/((1−x^2 )^2 (√(1−x^2 )))) +(x/((1−x^2 )(1−x^2 )(√(1−x^2 ))))}  =((πx)/2){  (2/((1−x^2 )^2 (√(1−x^2 )))) +(x/((1−x^2 )^2 (√(1−x^2 ))))}  =((πx(x+2))/(2(1−x^2 )^2 (√(1−x^2 )))) ⇒g(x) =((πx(x+2))/(4(1−x^2 )^2 (√(1−x^2 )))) .
2)wehavef(x)=+x(1(t22xt+1)2)dt=+2t(t22xt+1)(t22xt+1)4dt=2+tdt(t22xt+1)3=2g(x)g(x)=12f(x)wehavef(x)=π2(1x2)1x2f(x)=π2{(1x2)1(1x2)12}f(x)=π2{2x(1x2)2(1x2)12+x(1x2)32(1x2)1}=π2{2x(1x2)21x2+x(1x2)(1x2)1x2}=πx2{2(1x2)21x2+x(1x2)21x2}=πx(x+2)2(1x2)21x2g(x)=πx(x+2)4(1x2)21x2.
Commented by maxmathsup by imad last updated on 13/Apr/19
3) ∫_(−∞) ^(+∞)   (dt/((t^2 −(√2)t +1)^2 )) =f(((√2)/2)) = (π/(2(1−(((√2)/2))^2 (√(1−(((√2)/2))^2 ))))  =(π/(2(1−(1/2))(√(1−(1/2))))) =(π/( (√(1/2)))) =π(√2)  ∫_(−∞) ^(+∞)    ((tdt)/((t^2  −(√2)t +1)^3 )) =g(((√2)/2)) =((π((√2)/2)(((√2)/2) +2))/(4(1−(((√2)/2))^2 )^2 (√(1−(((√2)/2))^2 ))))  =((π(√2)(4+(√2)))/(16(1−(1/2))^2 (√(1−(1/2))))) =((π(√2)(4+(√2)))/(4.(1/( (√2))))) =((2π(4+(√2)))/4) =(π/2)(4+(√2)) .
3)+dt(t22t+1)2=f(22)=π2(1(22)21(22)2=π2(112)112=π12=π2+tdt(t22t+1)3=g(22)=π22(22+2)4(1(22)2)21(22)2=π2(4+2)16(112)2112=π2(4+2)4.12=2π(4+2)4=π2(4+2).
Commented by maxmathsup by imad last updated on 13/Apr/19
4) we have A(θ) =∫_(−∞) ^(+∞)    (dt/((t^2  −2cosθ t +1)^2 )) =f(cosθ)=(π/(2(1−cos^2 θ)(√(1−cos^2 θ))))  =(π/(2sin^2 θ sinθ)) =(π/(2sin^3 θ))  (     0<θ<(π/2))  also we have B(θ) =∫_(−∞) ^(+∞)    ((tdt)/((t^2 −2cosθ t +1)^3 )) ⇒B(θ) =g(cosθ)  =((π cosθ(cosθ +2))/(4(1−cos^2 θ)^2 (√(1−cos^2 θ)))) =((π cosθ(2+cosθ))/(4sin^4 θ sinθ)) =((2π cosθ +π cos^2 θ)/(4 sin^5 θ)) .
4)wehaveA(θ)=+dt(t22cosθt+1)2=f(cosθ)=π2(1cos2θ)1cos2θ=π2sin2θsinθ=π2sin3θ(0<θ<π2)alsowehaveB(θ)=+tdt(t22cosθt+1)3B(θ)=g(cosθ)=πcosθ(cosθ+2)4(1cos2θ)21cos2θ=πcosθ(2+cosθ)4sin4θsinθ=2πcosθ+πcos2θ4sin5θ.

Leave a Reply

Your email address will not be published. Required fields are marked *