Menu Close

let-f-x-dt-t-2-ixt-1-with-x-gt-2-i-2-1-1-extract-Re-f-x-and-Im-f-x-2-calculate-f-x-3-find-olso-g-x-t-t-2-ixt-1-2-dt-4-find-val




Question Number 63508 by mathmax by abdo last updated on 05/Jul/19
let  f(x) =∫_(−∞) ^(+∞)     (dt/((t^2  +ixt −1)))  with ∣x∣>2   (i^2 =−1)  1) extract Re(f(x)) and Im(f(x))  2) calculate f(x)  3)  find olso g(x) =∫_(−∞) ^(+∞)   (t/((t^2  +ixt −1)^2 ))dt  4) find values of integrals  ∫_(−∞) ^(+∞)    (dt/((t^2 +3it −1)))  and ∫_(−∞) ^(+∞)    ((tdt)/((t^2  +3it −1)^2 ))  5) give f^((n)) (x) at form of integrals.
letf(x)=+dt(t2+ixt1)withx∣>2(i2=1)1)extractRe(f(x))andIm(f(x))2)calculatef(x)3)findolsog(x)=+t(t2+ixt1)2dt4)findvaluesofintegrals+dt(t2+3it1)and+tdt(t2+3it1)25)givef(n)(x)atformofintegrals.
Commented by mathmax by abdo last updated on 06/Jul/19
1) we have f(x) =∫_(−∞) ^(+∞)    (dt/(t^2 −1 +ixt)) =∫_(−∞) ^(+∞)   ((t^2 −1−ixt)/((t^2 −1)^2 +x^2 t^2 ))dt  =∫_(−∞) ^(+∞)    ((t^2 −1)/(t^4 −2t^2  +1 +x^2 t^2 )) dt −i ∫_(−∞) ^(+∞)  ((xt)/(t^4 −2t^2  +1 +x^2 t^2 )) dt  =∫_(−∞) ^(+∞)   ((t^2 −1)/(t^4 +(x^2 −2)t^2  +1)) −i×0    (the function t→(t/(t^4  +(x^2 −2)t^2  +1)) is odd)⇒  Re(f(x)) =∫_(−∞) ^(+∞)   ((t^2 −1)/(t^4  +(x^2 −2)t^2 +1))dt and Im(f(x))=0
1)wehavef(x)=+dtt21+ixt=+t21ixt(t21)2+x2t2dt=+t21t42t2+1+x2t2dti+xtt42t2+1+x2t2dt=+t21t4+(x22)t2+1i×0(thefunctionttt4+(x22)t2+1isodd)Re(f(x))=+t21t4+(x22)t2+1dtandIm(f(x))=0
Commented by mathmax by abdo last updated on 06/Jul/19
2) let w(z) =(1/(z^2  +ixz −1))  poles of w(z)?  Δ =(ix)^2 −4(−1) =−x^2  +4 =4−x^2 <0 ⇒Δ =(i(√(x^2 −4)))^2  ⇒  z_1 =((−ix+i(√(x^2 −4)))/2)  and z_2 =((−ix−i(√(x^2 −4)))/2) ⇒w(z)=(1/((z−z_1 )(z−z_2 )))  residus theorem give ∫_(−∞) ^(+∞)  w(z)dz =2iπRes(w,z_1 )  Res(w,z_1 ) =lim_(z→z_1  )   (z−z_1 )w(z) =(1/(z_1 −z_2 )) =(1/(i(√(x^2 −4)))) ⇒  ∫_(−∞) ^(+∞) w(z)dz =2iπ (1/(i(√(x^2 −4)))) =((2π)/( (√(x^2 −4)))) ⇒f(x)=((2π)/( (√(x^2 −4))))
2)letw(z)=1z2+ixz1polesofw(z)?Δ=(ix)24(1)=x2+4=4x2<0Δ=(ix24)2z1=ix+ix242andz2=ixix242w(z)=1(zz1)(zz2)residustheoremgive+w(z)dz=2iπRes(w,z1)Res(w,z1)=limzz1(zz1)w(z)=1z1z2=1ix24+w(z)dz=2iπ1ix24=2πx24f(x)=2πx24
Commented by mathmax by abdo last updated on 06/Jul/19
3)by derivation we have f^′ (x) =−∫_(−∞) ^(+∞)   ((it)/((t^2 +ixt −1)^2 ))dt  =−i ∫_(−∞) ^(+∞)    ((tdt)/((t^2 +ixt −1)^2 )) =−ig(x) ⇒g(x)=i f^′ (x)  we have   f(x) =((2π)/( (√(x^2 −4)))) =2π(x^2 −4)^(−(1/2))  ⇒f^′ (x) =2π (−(1/2))(2x)(x^2 −4)^(−(3/2))   =((−2πx)/((x^2 −4)(√(x^2 −4)))) ⇒g(x) =((−2πix)/((x^2 −4)(√(x^2 −4)))) .
3)byderivationwehavef(x)=+it(t2+ixt1)2dt=i+tdt(t2+ixt1)2=ig(x)g(x)=if(x)wehavef(x)=2πx24=2π(x24)12f(x)=2π(12)(2x)(x24)32=2πx(x24)x24g(x)=2πix(x24)x24.
Commented by mathmax by abdo last updated on 06/Jul/19
4) we have proved that ∫_(−∞) ^(+∞)   (dt/(t^2 +ixt −1)) =((2π)/( (√(x^2 −4))))    if   ∣x∣>2 ⇒  ∫_(−∞) ^(+∞)   (dt/(t^2 +3it−1)) = ((2π)/( (√(3^2 −4)))) =((2π)/( (√5)))   also we have  ∫_(−∞) ^(+∞)    (t/((t^2  +ixt −1)^2 ))dt =((−2πix)/((x^2 −4)(√(x^2 −4)))) ⇒  ∫_(−∞) ^(+∞)    ((tdt)/((t^2 +3it−1)^2 )) =((−6iπ)/(5(√5))) .
4)wehaveprovedthat+dtt2+ixt1=2πx24ifx∣>2+dtt2+3it1=2π324=2π5alsowehave+t(t2+ixt1)2dt=2πix(x24)x24+tdt(t2+3it1)2=6iπ55.

Leave a Reply

Your email address will not be published. Required fields are marked *