Menu Close

let-f-x-e-2x-actan-3x-1-1-calculste-f-n-x-and-f-n-0-2-if-f-x-a-n-x-n-determine-the-sequence-a-n-3-calculate-0-f-x-dx-




Question Number 126179 by mathmax by abdo last updated on 17/Dec/20
let f(x)= e^(−2x)  actan (3x+1)  1)calculste f^((n)) (x) and f^((n)) (0)  2) if f(x)=Σ a_n x^n  determine the sequence a_n   3) calculate ∫_0 ^∞  f(x)dx
letf(x)=e2xactan(3x+1)1)calculstef(n)(x)andf(n)(0)2)iff(x)=Σanxndeterminethesequencean3)calculate0f(x)dx
Answered by mathmax by abdo last updated on 19/Dec/20
1) by lebniz formulae f^((n)) (x)=Σ_(k=0) ^n  C_n ^k  (arctan(3x+1))^((k)) (e^(−2x) )^()n−k))   =C_n ^o   arctan(3x+1)(−2)^n  e^(−2x)  +Σ_(k=1) ^n  C_n ^k (arctan(3x+1))^((k)) (−2)^(n−k)  e^(−2x)   let calculate  (arctan(3x+1))^k   we have  (dx/dx)(arctan(3x+1))=(3/(1+(3x+1)^2 )) ⇒(arctan(3x+1))^((k))  =3((1/((3x+1)^2 +1)))^((k−1))   =3((1/((3x+1+i)(3x+1−i))))^((k−1))  =(1/3)((1/(x+((1+i)/3))(x+((1−i)/3)))))^((k−1))   =(1/(3(((1−i)/3)−((1+i)/3))))((1/(x+((1+i)/3)))−(1/(x+((1−i)/3))))^((k−1))   =−(1/(2i))((1/(x+((√2)/3)e^((iπ)/4) ))−(1/(x+((√2)/3)e^(−((iπ)/4)) )))^((k−1))   =(i/2){  (((−1)^(k−1) (k−1)!)/((x+((√2)/3)e^((iπ)/4) )^k ))−(((−1)^(k−1) (k−1)!)/((x+((√2)/3)e^(−((iπ)/4)) )^k ))}  =(i/2)(−1)^(k−1) (k−1)!{  ((−2i Im(x+((√2)/3)e^((iπ)/4) )^k )/((x+((√2)/3)e^((iπ)/4) )^k (x+((√2)/3)e^(−((iπ)/4)) )^k ))} ⇒  f^((n)) (x)=(−2)^n  e^(−2x)  arctan(3x+1)+Σ_(k=1) ^n  C_n ^k  (−2)^(n−k)  e^(−2x) (−1)^k (k−1)!×((Im(x+((√2)/3)e^((iπ)/4) )^k )/((x+((√2)/3)e^((iπ)/4) )^k (x+((√2)/3)e^(−((iπ)/4)) )^k ))
1)bylebnizformulaef(n)(x)=k=0nCnk(arctan(3x+1))(k)(e2x))nk)=Cnoarctan(3x+1)(2)ne2x+k=1nCnk(arctan(3x+1))(k)(2)nke2xletcalculate(arctan(3x+1))kwehavedxdx(arctan(3x+1))=31+(3x+1)2(arctan(3x+1))(k)=3(1(3x+1)2+1)(k1)=3(1(3x+1+i)(3x+1i))(k1)=13(1x+1+i3)(x+1i3))(k1)=13(1i31+i3)(1x+1+i31x+1i3)(k1)=12i(1x+23eiπ41x+23eiπ4)(k1)=i2{(1)k1(k1)!(x+23eiπ4)k(1)k1(k1)!(x+23eiπ4)k}=i2(1)k1(k1)!{2iIm(x+23eiπ4)k(x+23eiπ4)k(x+23eiπ4)k}f(n)(x)=(2)ne2xarctan(3x+1)+k=1nCnk(2)nke2x(1)k(k1)!×Im(x+23eiπ4)k(x+23eiπ4)k(x+23eiπ4)k
Commented by mathmax by abdo last updated on 19/Dec/20
f^((n)) (0)=(−2)^n (π/4) +Σ_(k=1) ^n  (−2)^(n−k)  C_n ^k  (−1)^k (k−1)!×(((((√2)/3))^k sin(((kπ)/4)))/((((√2)/3))^k ))  f^((n)) (0)=(π/4)(−2)^n  +Σ_(k=1) ^n  (−1)^k (−2)^(n−k)  C_n ^k (k−1)!sin(((kπ)/4))
f(n)(0)=(2)nπ4+k=1n(2)nkCnk(1)k(k1)!×(23)ksin(kπ4)(23)kf(n)(0)=π4(2)n+k=1n(1)k(2)nkCnk(k1)!sin(kπ4)
Commented by mathmax by abdo last updated on 19/Dec/20
2)  f(x)=Σ a_n x^n  ⇒a_n =((f^((n)) (0))/(n!))  and f^((n)) (0) is known
2)f(x)=Σanxnan=f(n)(0)n!andf(n)(0)isknown
Commented by mathmax by abdo last updated on 19/Dec/20
sorry f^((n)) (0) =(π/4)(−2)^n  +Σ_(k=1) ^n  (−2)^(n−k)  C_n ^k  (−1)^k (k−1)!((3/( (√2))))^k  sin(((kπ)/4))
sorryf(n)(0)=π4(2)n+k=1n(2)nkCnk(1)k(k1)!(32)ksin(kπ4)

Leave a Reply

Your email address will not be published. Required fields are marked *