let-f-x-e-2x-arctan-3-x-2-find-f-n-x-and-f-n-1-2-if-f-x-n-0-a-n-x-1-n-determinate-a-n- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 99463 by mathmax by abdo last updated on 21/Jun/20 letf(x)=e−2xarctan(3x2)findf(n)(x)andf(n)(1)2)iff(x)=∑n=0∞an(x−1)ndeterminatean Answered by mathmax by abdo last updated on 23/Jun/20 leibnizgivef(n)(x)=∑k=0nCnk(arctan(3x2))(k)(e−2x)(n−k)=arctan(3x2)(−2)ne−2x+∑k=1nCnk(−2)n−ke−2x(arctan(3x2))(k)wehave(arctan(3x2))(1)=−3(2x)x4(1+9x4)=−6x3(1+9x4)=−6x3+9x=−6xx4+9=−6x(x2−3i)(x2+3i)=−6x(x−3eiπ4)(x+3eiπ4)(x−3e−iπ4)(x+3e−iπ4)=ax−3eiπ4+bx+3eiπ4+cx−3e−iπ4+dx+3e−iπ4a=−63eiπ423eiπ4(6i)=−12i,b=63eiπ4−23eiπ4(6i)=−12ic=−63e−iπ423e−iπ4(−6i)=12i,d=6e−iπ4(−23e−iπ4)(−6i)=12i⇒(arctan(3x2))(k)=12i{−(1x−3eiπ4)(k−1)−(1x+3eiπ4)(k−1)+(1x−3e−iπ4)(k−1)+(1x+3e−iπ4)(k−1)}=(−1)k−1(k−1)!2i{1(x−3e−iπ4)k+1(x+3e−iπ4)k−1(x−3eiπ4)k−1(x+3eiπ4)k}=(−1)k−1(k−1)!2i{2iIm(x+3eiπ4)k+2iIm(x−3e−iπ4)}=(−1)k−1(k−1)!{Im(x+3eiπ4)k+Im(x−3e−iπ4)k}⇒f(n)(x)=(−2)ne−2xarctan(3x2)+∑k=1nCnk(−2)n−ke−2x(−1)k−1(k−1)!{Im(x+3eiπ4)k+Im(x−3e−iπ4)k} Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: determine-L-1-cosx-x-2-Next Next post: Question-164996 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.