Menu Close

let-f-x-e-2x-arctan-3-x-2-find-f-n-x-and-f-n-1-2-if-f-x-n-0-a-n-x-1-n-determinate-a-n-




Question Number 99463 by mathmax by abdo last updated on 21/Jun/20
let f(x) =e^(−2x)  arctan((3/x^2 ))  find f^((n)) (x) and f^((n)) (1)  2) if f(x) =Σ_(n=0) ^∞  a_n (x−1)^n     determinate a_n
letf(x)=e2xarctan(3x2)findf(n)(x)andf(n)(1)2)iff(x)=n=0an(x1)ndeterminatean
Answered by mathmax by abdo last updated on 23/Jun/20
leibniz give  f^((n)) (x) =Σ_(k=0) ^n  C_n ^k  (arctan((3/x^2 )))^((k))  (e^(−2x) )^((n−k))   =arctan((3/x^2 ))(−2)^n  e^(−2x)  +Σ_(k=1) ^(n  )  C_n ^k  (−2)^(n−k)  e^(−2x)  (arctan((3/x^2 )))^((k))   we have (arctan((3/x^2 )))^((1))  =−((3(2x))/(x^4 (1+(9/x^4 )))) =((−6)/(x^3 (1+(9/x^4 )))) =((−6)/(x^3  +(9/x)))  =((−6x)/(x^4  +9)) =((−6x)/((x^2 −3i)(x^2  +3i))) =((−6x)/((x−(√3)e^((iπ)/4) )(x+(√3)e^((iπ)/4) )(x−(√3)e^(−((iπ)/4)) )(x+(√3)e^(−((iπ)/4)) )))  =(a/(x−(√3)e^((iπ)/4) )) +(b/(x+(√3)e^((iπ)/4) )) +(c/(x−(√3)e^(−((iπ)/4)) )) +(d/(x+(√3)e^(−((iπ)/4)) ))  a =((−6(√3)e^((iπ)/4) )/(2(√3)e^((iπ)/4) (6i))) =−(1/(2i))  ,b =((6(√3)e^((iπ)/4) )/(−2(√3)e^((iπ)/4) (6i))) =−(1/(2i))  c =((−6(√3)e^(−((iπ)/4)) )/(2(√3)e^(−((iπ)/4)) (−6i)))=(1/(2i)) ,  d =((6 e^(−((iπ)/4)) )/((−2(√3)e^(−((iπ)/4)) )(−6i))) =(1/(2i)) ⇒  (arctan((3/x^2 )))^((k))  =(1/(2i)){−((1/(x−(√3)e^((iπ)/4) )))^((k−1)) −((1/(x+(√3)e^((iπ)/4) )))^((k−1))  +((1/(x−(√3)e^(−((iπ)/4)) )))^((k−1))   +((1/(x+(√3)e^(−((iπ)/4)) )))^((k−1)) }  =(((−1)^(k−1) (k−1)!)/(2i)){(1/((x−(√3)e^(−((iπ)/4)) )^k )) +(1/((x+(√3)e^(−((iπ)/4)) )^k ))−(1/((x−(√3)e^((iπ)/4) )^k ))−(1/((x+(√3)e^((iπ)/4) )^k ))}  =(((−1)^(k−1) (k−1)!)/(2i)){2i Im(x+(√3)e^((iπ)/4) )^k +2i Im(x−(√3)e^(−((iπ)/4)) )}  =(−1)^(k−1) (k−1)!{ Im(x+(√3) e^((iπ)/4) )^k  +Im(x−(√3)e^(−((iπ)/4)) )^k } ⇒  f^((n)) (x) =(−2)^n  e^(−2x)  arctan((3/x^2 ))  +Σ_(k=1) ^n   C_n ^k  (−2)^(n−k)  e^(−2x)  (−1)^(k−1) (k−1)!{Im(x+(√3)e^((iπ)/4) )^k  +Im(x−(√3)e^(−((iπ)/4)) )^k }
leibnizgivef(n)(x)=k=0nCnk(arctan(3x2))(k)(e2x)(nk)=arctan(3x2)(2)ne2x+k=1nCnk(2)nke2x(arctan(3x2))(k)wehave(arctan(3x2))(1)=3(2x)x4(1+9x4)=6x3(1+9x4)=6x3+9x=6xx4+9=6x(x23i)(x2+3i)=6x(x3eiπ4)(x+3eiπ4)(x3eiπ4)(x+3eiπ4)=ax3eiπ4+bx+3eiπ4+cx3eiπ4+dx+3eiπ4a=63eiπ423eiπ4(6i)=12i,b=63eiπ423eiπ4(6i)=12ic=63eiπ423eiπ4(6i)=12i,d=6eiπ4(23eiπ4)(6i)=12i(arctan(3x2))(k)=12i{(1x3eiπ4)(k1)(1x+3eiπ4)(k1)+(1x3eiπ4)(k1)+(1x+3eiπ4)(k1)}=(1)k1(k1)!2i{1(x3eiπ4)k+1(x+3eiπ4)k1(x3eiπ4)k1(x+3eiπ4)k}=(1)k1(k1)!2i{2iIm(x+3eiπ4)k+2iIm(x3eiπ4)}=(1)k1(k1)!{Im(x+3eiπ4)k+Im(x3eiπ4)k}f(n)(x)=(2)ne2xarctan(3x2)+k=1nCnk(2)nke2x(1)k1(k1)!{Im(x+3eiπ4)k+Im(x3eiπ4)k}

Leave a Reply

Your email address will not be published. Required fields are marked *