Menu Close

let-f-x-e-2x-arctan-x-1-calculate-f-n-x-2-calculate-f-n-0-3-developp-f-at-integr-serie-




Question Number 42482 by maxmathsup by imad last updated on 26/Aug/18
let f(x)=e^(−2x)  arctan(x)  1) calculate f^((n)) (x)  2) calculate f^((n)) (0)  3) developp f at integr serie .
letf(x)=e2xarctan(x)1)calculatef(n)(x)2)calculatef(n)(0)3)developpfatintegrserie.
Commented by maxmathsup by imad last updated on 29/Aug/18
1) we have by leibniz formula f^((n)) (x) = Σ_(k=0) ^n  C_n ^k   arctan^((k)) x(x)(e^(−2x) )^((n−k))   =(−2)^n  e^(−2x)  arctan(x) +Σ_(k=1) ^n  C_n ^k   arctan^((k)) (x) (e^(−2x) )^((n−k))  but  arctan^((1)) (x) =(1/(1+x^2 )) ⇒arctan^((k)) (x)=((1/(1+x^2 )))^((k−1))   =(1/(2i)){ (1/(x−i)) −(1/(x+i))}^((k−1))  =(1/(2i)){ (((−1)^(k−1) (k−1)!)/((x−i)^k )) −(((−1)^(k−1) (k−1)!)/((x+i)^k ))}  =(((−1)^(k−1) (k−1)!)/(2i)){ (1/((x−i)^k )) −(1/((x+i)^k ))}  also we have (e^(−2x) )^((n−k)) =(−2)^(n−k)  e^(−2x)   ⇒  f^((n)) (x) =(−2)^n  e^(−2x) arctanx +Σ_(k=1) ^n  C_n ^k   (((−1)^(k−1) (k−1)!)/(2i)){(1/((x−i)^k )) −(1/((x+i)^k ))}(−2)^(n−k)  e^(−2x)
1)wehavebyleibnizformulaf(n)(x)=k=0nCnkarctan(k)x(x)(e2x)(nk)=(2)ne2xarctan(x)+k=1nCnkarctan(k)(x)(e2x)(nk)butarctan(1)(x)=11+x2arctan(k)(x)=(11+x2)(k1)=12i{1xi1x+i}(k1)=12i{(1)k1(k1)!(xi)k(1)k1(k1)!(x+i)k}=(1)k1(k1)!2i{1(xi)k1(x+i)k}alsowehave(e2x)(nk)=(2)nke2xf(n)(x)=(2)ne2xarctanx+k=1nCnk(1)k1(k1)!2i{1(xi)k1(x+i)k}(2)nke2x
Commented by maxmathsup by imad last updated on 29/Aug/18
2) x=0 ⇒f^((n)) (0) = Σ_(k=1) ^n   C_n ^k   (((−1)^(k−1) (k−1)!)/(2i)){ (1/((−i)^k )) −(1/i^k )}(−2)^(n−k)   f^((n)) (0) = (1/(2i))Σ_(k=1) ^n     (−1)^(k−1) (k−1)!  ((n!)/(k!(n−k)!)){ e^((ikπ)/2)  − e^(−((ikπ)/2)) }  = Σ_(k=1) ^n   (((−1)^(k−1) n!)/(k(n−k)!)) sin(((kπ)/2))
2)x=0f(n)(0)=k=1nCnk(1)k1(k1)!2i{1(i)k1ik}(2)nkf(n)(0)=12ik=1n(1)k1(k1)!n!k!(nk)!{eikπ2eikπ2}=k=1n(1)k1n!k(nk)!sin(kπ2)
Commented by maxmathsup by imad last updated on 29/Aug/18
3) we have f(x) = Σ_(n=0) ^∞    ((f^((n)) (0))/(n!)) x^n   = f(0) +Σ_(n=1) ^∞    ((f^((n)) (0))/(n!)) x^n       (f(o)=0)   =Σ_(n=1) ^∞   ( Σ_(k=1) ^n   (((−1)^(k−1) )/(k(n−k)!)) sin(((kπ)/2))) x^n   .
3)wehavef(x)=n=0f(n)(0)n!xn=f(0)+n=1f(n)(0)n!xn(f(o)=0)=n=1(k=1n(1)k1k(nk)!sin(kπ2))xn.

Leave a Reply

Your email address will not be published. Required fields are marked *