Menu Close

let-f-x-e-2x-arctan-x-2-1-calculate-f-n-x-2-find-f-n-0-3-developp-f-at-integr-serie-




Question Number 37838 by math khazana by abdo last updated on 18/Jun/18
let f(x)= e^(−2x)  arctan(x^2 )  1)calculate f^((n)) (x)  2) find f^((n)) (0)  3) developp f at integr serie
letf(x)=e2xarctan(x2)1)calculatef(n)(x)2)findf(n)(0)3)developpfatintegrserie
Commented by math khazana by abdo last updated on 20/Jun/18
Leiniz formula give  f^((n)) (x)= Σ_(k=0) ^n  C_n ^k   (arctan(x^2 ))^((k))  (e^(−2x) )^((n−k))   we have (e^(−2x) )^((1)) =−2 e^(−2x)   (e^(−2x) )^((2)) =(−2)^2  e^(−2x)  ⇒ (e^(−2x) )^((p)) =(−2)^p  e^(−2x)   also we have   (arctan(x^2 ))^((1)) = ((2x)/(1+x^4 )) ⇒  (arctan(x^2 ))^((n)) =(((2x)/(1+x^4 )))^((n−1))   let w(x) = (x/(1+x^4 ))  w(x)= (x/((x^2  −i)(x^2 +i))) =(x/((x−(√i))(x+(√i))(x−(√(−i)))(x+(√(−i)))))  = (x/((x −e^((iπ)/4) )(x+ e^((iπ)/4) )( x−e^(−((iπ)/4)) )(x+e^(−((iπ)/4)) )))  =(a/(x−e^((iπ)/4) ))  +(b/(x +e^((iπ)/4) ))  +(c/(x−e^(−((iπ)/4)) )) +(d/(x + e^(−((iπ)/4)) ))  λ_i = (z_i /(4z_i ^3 )) = (1/(4z_i ^2 )) ⇒a= (1/(4(e^((iπ)/4) )^2 )) = (1/(4i)) =((−i)/4)  b =(1/(4i))=((−i)/4)   ,   c=−(1/(4i)) =(i/4)    ,   d=−(1/(4i)) =(i/4) ⇒  w^((n−1)) (x) =((−i)/4)  (((−1)^(n−1) (n−1)!)/((x−e^((iπ)/4) )^n ))  −(i/4) (((−1)^(n−1) (n−1)!)/((x +e^((iπ)/4) )^n ))  +(i/4) (((−1)^(n−1) (n−1)!)/((x−e^(−((iπ)/4)) )^n ))  +(i/4) (((−1)^(n−1) (n−1)!)/((x +e^(−((iπ)/4)) )^n )) ⇒  (arctan(x^2 ))^((n))   =(i/2)(−1)^(n−1) (n−1)!{  ((−1)/((x −e^((iπ)/4) )^n )) +((−1)/((x +e^((iπ)/4) )^n ))  + (1/((x −e^(−((iπ)/4)) )^n ))  + (1/((x +e^(−((iπ)/4)) )^n )) } ⇒  f^((n)) (x)  = (i/2)(−1)^(n−1) (n−1)!Σ_(k=0) ^n  (−2)^(n−k)  C_n ^k {((−1)/((x−e^((iπ)/4) )^k ))   +((−1)/((x +e^((iπ)/4) )^k ))  + (1/((x−e^(−((iπ)/4)) )^k )) +(1/((x +e^(−((iπ)/4)) )^k ))} e^(−2x)  .
Leinizformulagivef(n)(x)=k=0nCnk(arctan(x2))(k)(e2x)(nk)wehave(e2x)(1)=2e2x(e2x)(2)=(2)2e2x(e2x)(p)=(2)pe2xalsowehave(arctan(x2))(1)=2x1+x4(arctan(x2))(n)=(2x1+x4)(n1)letw(x)=x1+x4w(x)=x(x2i)(x2+i)=x(xi)(x+i)(xi)(x+i)=x(xeiπ4)(x+eiπ4)(xeiπ4)(x+eiπ4)=axeiπ4+bx+eiπ4+cxeiπ4+dx+eiπ4λi=zi4zi3=14zi2a=14(eiπ4)2=14i=i4b=14i=i4,c=14i=i4,d=14i=i4w(n1)(x)=i4(1)n1(n1)!(xeiπ4)ni4(1)n1(n1)!(x+eiπ4)n+i4(1)n1(n1)!(xeiπ4)n+i4(1)n1(n1)!(x+eiπ4)n(arctan(x2))(n)=i2(1)n1(n1)!{1(xeiπ4)n+1(x+eiπ4)n+1(xeiπ4)n+1(x+eiπ4)n}f(n)(x)=i2(1)n1(n1)!k=0n(2)nkCnk{1(xeiπ4)k+1(x+eiπ4)k+1(xeiπ4)k+1(x+eiπ4)k}e2x.
Commented by math khazana by abdo last updated on 20/Jun/18
error of calculus at the final line  f^((n)) (x) =(i/2) Σ_(k=0) ^n  (−2)^(n−k)   (−1)^(k−1) (k−1)! C_n ^k {  ((−1)/((x−e^((iπ)/4) )^k )) +((−1)/((x +e^((iπ)/4) )^k ))  + (1/((x−e^(−((iπ)/4)) )^k )) +(1/((x+e^(−((iπ)/4)) )^k ))}e^(−2x)
errorofcalculusatthefinallinef(n)(x)=i2k=0n(2)nk(1)k1(k1)!Cnk{1(xeiπ4)k+1(x+eiπ4)k+1(xeiπ4)k+1(x+eiπ4)k}e2x
Commented by math khazana by abdo last updated on 20/Jun/18
f^((n)) (0) =(i/2)Σ_(k=1) ^n (−2)^(n−k) (−1)^(k−1)  (k−1)!{  −(−e^((iπ)/4) )^(−k)  − ( e^((iπ)/4) )^(−k)   +(−e^(−((iπ)/4)) )^(−k)  +(e^(−((iπ)/4)) )^(−k) }  =(i/2)Σ_(k=1) ^n  (−2)^(n−k) (−1)^(k−1) (k−1)!{−(−1)^k  e^(−((ikπ)/4))   −e^(−((ikπ)/4))   +(−1)^k  e^((ikπ)/4)   + e^((ikπ)/4) }  =(i/2) Σ_(k=1) ^n (−2)^(n−k) (−1)^(k−1)) (k−1)!{((−1)^k +1)(e^((ikπ)/4) −e^(−((ikπ)/4)) )  =(i/2)Σ_(k=1) ^n (−1)^(k−1) (k−1)!(−2)^(n−k) {1+(−1)^k }2isin(((kπ)/4))  =Σ_(k=1) ^n (−1)^k (k−1)!(−2)^(n−k) (1+(−1)^k )sin(((kπ)/4))
f(n)(0)=i2k=1n(2)nk(1)k1(k1)!{(eiπ4)k(eiπ4)k+(eiπ4)k+(eiπ4)k}=i2k=1n(2)nk(1)k1(k1)!{(1)keikπ4eikπ4+(1)keikπ4+eikπ4}=i2k=1n(2)nk(1)k1)(k1)!{((1)k+1)(eikπ4eikπ4)=i2k=1n(1)k1(k1)!(2)nk{1+(1)k}2isin(kπ4)=k=1n(1)k(k1)!(2)nk(1+(1)k)sin(kπ4)
Commented by math khazana by abdo last updated on 20/Jun/18
3) f(x)=Σ_(n=0) ^∞   ((f^((n)) (0))/(n!)) x^n   = 2 Σ_(n=1) ^∞   (1/(n!)){Σ_(p=1) ^([(n/2)]) (2p−1)!(−2)^(n−2p) sin(((pπ)/2))}x^n
3)f(x)=n=0f(n)(0)n!xn=2n=11n!{p=1[n2](2p1)!(2)n2psin(pπ2)}xn
Commented by math khazana by abdo last updated on 20/Jun/18
f^((n)) (0) =Σ_(p=1) ^([(n/2)])  (2p−1)!(−2)^(n−2p)  sin(((pπ)/2)).
f(n)(0)=p=1[n2](2p1)!(2)n2psin(pπ2).

Leave a Reply

Your email address will not be published. Required fields are marked *