Menu Close

let-f-x-e-2x-arctanx-1-calculate-f-n-x-2-find-f-n-0-3-developp-f-at-integr-serie-




Question Number 35235 by abdo.msup.com last updated on 17/May/18
let f(x)= e^(−2x)  arctanx  1) calculate f^((n)) (x)  2) find f^((n)) (0)  3) developp f at integr serie
letf(x)=e2xarctanx1)calculatef(n)(x)2)findf(n)(0)3)developpfatintegrserie
Commented by abdo mathsup 649 cc last updated on 18/May/18
 leibniz formula give f^()n)) (x)= Σ_(k=0) ^n  C_n ^k  (arctanx)^((k))  (e^(−2x) )^((n−k))   we have (arctanx)^((1)) = (1/(1+x^2 )) ⇒  (arctanx)^((k)) = ((1/(1+x^2 )))^((k−1)) =((1/((x−i)(x+i))))^((k−1))   =(1/(2i)){ (1/(x−i)) −(1/(x+i))}^((k−1))   = (1/(2i)){  (((−1)^(k−1)  (k−1)!)/((x−i)^k ))  −(((−1)^(k−1) (k−1)!)/((x+i)^k ))}  =(((−1)^(k−1) (k−1)!)/(2i)) {(((x+i)^k  −(x−i)^k )/((x^2 +1)^k ))}  let find (e^(−2x) )^((p))   we have  (e^(−2x) )^((1)) =−2 e^(−2x)    ,  (e^(−2x) )^((2)) =(−2)^2   e^(−2x)   ....(e^(−2x) )^((p))   = (−2)^p  e^(−2p) ⇒  f^((n)) (x) =arctanx (−2)^n  e^(−2x)   +Σ_(k=1) ^n   C_n ^k     (((−1)^(k−1) (k−1)!)/(2i)){ (((x+i)^k  −(x−i)^k )/((x^2 +1)^k ))}(−2)^(n−k)  e^(−2x)   2) f^((n)) (0)=   Σ_(k=1) ^n    C_n ^k    (((−1)^(k−1) (k−1)!)/(2i)){((i^k  −(−i)^k )/1)}(−2)^(n−k)   but i^k  −(−i)^k  =e^(i((kπ)/2))  −e^(−i((kπ)/2))  =2i sin(((kπ)/2)) ⇒  f^((n)) (0)=Σ_(k=1) ^n C_n ^k  (k−1)!(−1)^(k−1) (−2)^(n−k)  sin(((kπ)/2))
leibnizformulagivef)n)(x)=k=0nCnk(arctanx)(k)(e2x)(nk)wehave(arctanx)(1)=11+x2(arctanx)(k)=(11+x2)(k1)=(1(xi)(x+i))(k1)=12i{1xi1x+i}(k1)=12i{(1)k1(k1)!(xi)k(1)k1(k1)!(x+i)k}=(1)k1(k1)!2i{(x+i)k(xi)k(x2+1)k}letfind(e2x)(p)wehave(e2x)(1)=2e2x,(e2x)(2)=(2)2e2x.(e2x)(p)=(2)pe2pf(n)(x)=arctanx(2)ne2x+k=1nCnk(1)k1(k1)!2i{(x+i)k(xi)k(x2+1)k}(2)nke2x2)f(n)(0)=k=1nCnk(1)k1(k1)!2i{ik(i)k1}(2)nkbutik(i)k=eikπ2eikπ2=2isin(kπ2)f(n)(0)=k=1nCnk(k1)!(1)k1(2)nksin(kπ2)
Commented by abdo mathsup 649 cc last updated on 18/May/18
3) we have C_n ^k   (k−1)! =((n!)/(k!(n−k)!))(k−1)!  = ((n!)/(k(n−k)!))  the developpent of f is  f(x) = Σ_(n=0) ^∞    ((f^((n)) (0))/(n!)) x^n    =Σ_(n=0) ^∞    { Σ_(k=1) ^n   (1/(k(n−k)!))(−1)^(k−1) (−2)^(n−k)  sin(((kπ)/2))}x^n
3)wehaveCnk(k1)!=n!k!(nk)!(k1)!=n!k(nk)!thedeveloppentoffisf(x)=n=0f(n)(0)n!xn=n=0{k=1n1k(nk)!(1)k1(2)nksin(kπ2)}xn

Leave a Reply

Your email address will not be published. Required fields are marked *