let-f-x-e-2x-arctanx-1-calculate-f-n-x-2-find-f-n-0-3-developp-f-at-integr-serie- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 35235 by abdo.msup.com last updated on 17/May/18 letf(x)=e−2xarctanx1)calculatef(n)(x)2)findf(n)(0)3)developpfatintegrserie Commented by abdo mathsup 649 cc last updated on 18/May/18 leibnizformulagivef)n)(x)=∑k=0nCnk(arctanx)(k)(e−2x)(n−k)wehave(arctanx)(1)=11+x2⇒(arctanx)(k)=(11+x2)(k−1)=(1(x−i)(x+i))(k−1)=12i{1x−i−1x+i}(k−1)=12i{(−1)k−1(k−1)!(x−i)k−(−1)k−1(k−1)!(x+i)k}=(−1)k−1(k−1)!2i{(x+i)k−(x−i)k(x2+1)k}letfind(e−2x)(p)wehave(e−2x)(1)=−2e−2x,(e−2x)(2)=(−2)2e−2x….(e−2x)(p)=(−2)pe−2p⇒f(n)(x)=arctanx(−2)ne−2x+∑k=1nCnk(−1)k−1(k−1)!2i{(x+i)k−(x−i)k(x2+1)k}(−2)n−ke−2x2)f(n)(0)=∑k=1nCnk(−1)k−1(k−1)!2i{ik−(−i)k1}(−2)n−kbutik−(−i)k=eikπ2−e−ikπ2=2isin(kπ2)⇒f(n)(0)=∑k=1nCnk(k−1)!(−1)k−1(−2)n−ksin(kπ2) Commented by abdo mathsup 649 cc last updated on 18/May/18 3)wehaveCnk(k−1)!=n!k!(n−k)!(k−1)!=n!k(n−k)!thedeveloppentoffisf(x)=∑n=0∞f(n)(0)n!xn=∑n=0∞{∑k=1n1k(n−k)!(−1)k−1(−2)n−ksin(kπ2)}xn Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: let-f-x-e-x-n-with-n-fromN-developp-f-at-integr-serie-Next Next post: study-the-convergence-of-0-e-x-e-x-2-x-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.